

PyOpenCAP Documentation

PyOpenCAP is the Python API for OpenCAP [https://github.com/gayverjr/opencap], an open-source software aimed at extending the functionality
of quantum chemistry packages to describe resonances. PyOpenCAP uses the pybind11 [https://github.com/pybind/pybind11] library
to expose C++ classes and methods, allowing calculations to be driven within a Python interpreter.

PyOpenCAP is currently capable of processing quantum chemistry data in order to
perform ‘perturbative’ complex absorbing potential calculations on metastable electronic states.
These calculations are able to extract resonance position and width at the
cost of a single bound-state electronic structure calculation.

To get started, please see our tutorial.

If you have questions or need support, please open an issue on GitHub, or contact us directly at gayverjr@bu.edu.

PyOpenCAP is released under the MIT license [https://github.com/gayverjr/opencap/blob/master/LICENSE].

Supported Packages

	OpenMolcas [https://molcas.gitlab.io/OpenMolcas/sphinx/]

	PySCF [http://pyscf.org/]

Supported Potentials

	Box

	Smooth Voronoi

Please see the keywords section for more details.

Upcoming features

	automated trajectory analysis tools

	interface to Psi4 [http://www.psicode.org/]

Contents

	Installation

	Tutorial

	Theory

	Interfaces

	API

	Keywords

	References

Installation

Install with pip (recommended)

pip install pyopencap
or
pip3 install pyopencap

Precompiled Python wheels are available on Pypi for almost all Linux systems and
most MacOS systems, for Python versions 3.6 and later.

Build from source

Dependencies

Compiling PyOpenCAP from source requires first installing the following dependencies:

	C++ compiler with full C++17 language support and standard libraries (Warning: Default Apple Clang on MacOS is not supported)

	Python3 interpreter and development libraries: version >= 3.6

	CMake [https://cmake.org/]: version >= 3.12

	HDF5 [https://www.hdfgroup.org/solutions/hdf5/]: hierarchical data format, version >= 1.10

	Eigen [http://eigen.tuxfamily.org/dox/]: linear algebra library, version >= 3.3

All of these dependencies are available through standard package managers such as
Homebrew [https://brew.sh/], Conda [https://docs.conda.io/en/latest/], and yum/apt-get on Linux.

Compiler

For Linux users, any compiler which fully supports the C++17 standard should work
(e.g GCC 7.x or later). If you are unsure, try updating to the latest version of your
compiler.

For Mac users, as of MacOS 10.15 Catalina, the Apple Clang provided by XCode will not work due to missing standard
library features. We suggest installing the latest version of GCC (currently 10.2)
from Homebrew [https://brew.sh/], and then setting the following environment variables before attempting to build from source:

for GCC 10 installed by brew

export CC=gcc-10

export CXX=g++-10

Building the package

If your operating system/Python environment is not covered by any of our pre-built wheels,
the command pip install pyopencap will download the tarball from Pypi and try to compile from source.
You can also clone the repository and install a local version:

git clone https://github.com/gayverjr/opencap.git

cd opencap

pip install .

Compiling from source will take several minutes. To monitor your progress, you can run pip
with the –verbose flag.

To ensure that the installation was successful, return to your home directory, start a Python shell, and type:

import pyopencap

If you cloned the repository, you can run the tests by entering the pyopencap directory,
and running pytest. The following python packages are required to run the tests:

pip install h5py
pip install numpy
pip install pytest
pip install pyscf

Tutorial

This is a tutorial to get you started using PyOpenCAP. Here, we walk through the steps to generate
the zeroth order Hamiltonian and the CAP matrix required to perform
a perturbative CAP/XMS-CASPT2 calculation on the \({}^2\Pi_g\) shape resonance of
\(N_2^-\).

To follow along with the tutorial, install [https://gayverjropencap.readthedocs.io/en/latest/install.html] PyOpenCAP, clone the repository, and open a Python interpreter in
the examples/pyopencap/openmolcas [https://github.com/gayverjr/opencap/tree/master/examples/pyopencap/openmolcas] directory. Alternatively, copy the files “nosymm.rassi.h5” and “nosymm.out”
located in the examples/opencap [https://github.com/gayverjr/opencap/tree/master/examples/opencap] directory to your working directory, and set the “RASSI_FILE”
and “OUTPUT_FILE” variables to the appropriate paths.

A notebook version of this tutorial can be found here [https://github.com/gayverjr/opencap/blob/master/examples/pyopencap/openmolcas/Tutorial.ipynb].

Preliminary: Importing the module

In addition to PyOpenCAP, we’ll import numpy to help us process the data. We’ll also
set the paths to the RASSI_FILE and OUTPUT_FILE generated by OpenMolcas, which we’ll be processing
to run our perturbative CAP calculation.

>>> import pyopencap
>>> import numpy as np
>>> RASSI_FILE = "../../opencap/nosymm.rassi.h5"
>>> OUTPUT_FILE = "../../opencap/nosymm.out"

Constructing the System object

The System object of PyOpenCAP contains the geometry and basis set information, as well
as the overlap matrix. The constructor takes in a Python dictionary as an argument,
and understands a specific set of keywords [https://gayverjropencap.readthedocs.io/en/latest/keywords.html] . There are three equivalent ways of specifying
the geometry and basis set: rassi_h5, molden, and inline. Here, we’ll use the rassi_h5 file.

>>> sys_dict = {"molecule": "molcas_rassi","basis_file": RASSI_FILE}
>>> s = pyopencap.System(sys_dict)
>>> smat = s.get_overlap_mat()
>>> np.shape(smat)
Number of basis functions:119
(119, 119)

Constructing the CAP object

The CAP matrix is computed by the CAP object. The constructor
requires a System object, a dictionary containing the CAP parameters,
the number of states (10 in this case), and finally the string “openmolcas”, which
denotes the ordering of the atomic orbital basis set.

>>> cap_dict = {"cap_type": "box",
 "cap_x":"2.76",
 "cap_y":"2.76",
 "cap_z":"4.88",
 "Radial_precision": "14",
 "angular_points": "110"}
>>> pc = pyopencap.CAP(s,cap_dict,10,"openmolcas")

Parsing electronic structure data from file

The read_data() function can read in the effective Hamiltonian
and densities in one-shot when passed a Python dictionary with the right keywords [https://gayverjropencap.readthedocs.io/en/latest/keywords.html]. For now,
we’ll retrieve the effective Hamiltonian and store it as h0 for later use.

>>> es_dict = {"method" : "ms-caspt2",
 "molcas_output":OUTPUT_FILE,
 "rassi_h5": RASSI_FILE}
>>> pc.read_data(es_dict)
>>> h0 = pc.get_H()

Passing densities in RAM

Alternatively, one can load in the densities one at a time using the add_tdms()
or add_tdm() functions. We load in the matrices from rassi.h5
using the h5py package, and then pass them as numpy arrays to the CAP object.
In this example, the CAP matrix is made to be symmetric.

>>> import h5py
>>> f = h5py.File(RASSI_FILE, 'r')
>>> dms = f["SFS_TRANSITION_DENSITIES"]
>>> pc = pyopencap.CAP(s,cap_dict,10,"openmolcas")
>>> for i in range(0,10):
>>> for j in range(i,10):
>>> dm1 = np.reshape(dms[i][j],(119,119))
>>> pc.add_tdm(dm1,i,j,"openmolcas",RASSI_FILE)
>>> if i!=j:
>>> pc.add_tdm(dm1,j,i,"openmolcas",RASSI_FILE)

Once all of the densities are loaded, the CAP matrix is computed
using the compute_perturb_cap() function. The matrix can be retrieved using the
get_perturb_cap() function.

>>> pc.compute_perturb_cap()
>>> W_mat=pc.get_perturb_cap()

We now have our zeroth order Hamiltonian (stored in h0) and our CAP matrix(W_mat) in
the state basis. Extracting resonance position and width requires analysis of the
eigenvalue trajectories.

The script example.py [https://github.com/gayverjr/opencap/blob/master/examples/pyopencap/openmolcas/example.py] runs this example and diagonalizes the CAP-augmented Hamiltonian \(H^{CAP}=H_0-i\eta W\)
over a range of \(\eta\)-values. The reference energy was obtained in a separate calculation which
computed the ground state of the neutral molecule with CASCI/CASPT2 using the optimized orbitals of the
anionic state. The results are plotted below:

[image: _images/trajectories.png]
The resonance trajectory will vary slowest with the changing CAP strength. Zooming in on the
trajectory near 2.2eV, we also plot the “corrected” trajectory, which is obtained by applying the
first-order correction:

\(U(\eta)=E(\eta)-\eta\frac{\partial E(\eta) }{\partial \eta}\).

[image: _images/res_trajectory.png]
Finally, the best estimate of resonance position and width are obtained at the stationary point

\(\eta_{opt} = min \left | \eta^2 \frac{\partial^2 E }{\partial \eta^2} \right |\).

For this example, this yields a resonance energy of 2.15eV, and a width of 0.35eV.

Theory

Resonances and Non-Hermitian Quantum Mechanics

Electronic resonances are metastable electronic states with finite lifetimes embedded in the
ionization/detachment continuum. Common examples include temporary anions formed by
electron attachment, and core-excited and core-ionized states which can undergo Auger decay or similar
relaxation pathways. These states are not part of the usual \(L^2\) Hilbert space of
square integrable functions, and instead belong to the continuous spectrum of the electronic Hamiltonian.
Theoretical description of resonances is generally not possible by means of conventional
bound-state quantum chemistry methods, and special techniques are required to obtain accurate
energies and lifetimes.

Non-Hermitian quantum mechanics (NHQM) techniques provide an attractive approach
that enables adaptation of existing quantum chemistry methodologies to treat metastable electronic
states. In NHQM formalisms, a resonance appears as a single square-integrable
eigenstate of a non-Hermitian Hamiltonian, associated with a with a complex eigenvalue:

\(E=E_{res}-i\Gamma/2\).
The real part of the energy \((E_{res})\) is the resonance position. The imaginary part \((\Gamma/2)\)
is the half-width, which is inversely proportional to the lifetime of the state [Reinhardt1982].

Complex Absorbing Potential

Complex absorbing potentials (CAPs) are imaginary potentials added to the Hamiltonian, and
they are routinely used for evaluation of resonance parameters. In this context, CAPs
transform a resonance into a single square integrable state, rendering it accessible by
means of standard bound-state techniques. To this end, the electronic Hamiltonian is
augmented with an imaginary potential:

\(H^{CAP}=H-i\eta W\)
where \(\eta\) is the CAP strength parameter, and W is a real potential which vanishes in the
vicinity of the molecular system and grows with distance [Riss1993].

Since the CAP-augmented Hamiltonian depends on the strength of the CAP, a choice
has to be made on the optimal value of \(\eta\) that provides best estimates of the resonance
position and width. In a complete one-electron basis, the exact resonance position and
width are obtained in the limit of an infinitesimally weak CAP \((\eta \rightarrow 0^+)\). In practice
when finite bases are used, an optimal CAP strength \(\eta_{opt}\) is found by locating a stationary
point on the eigenvalue trajectory E(\(\eta\)). A commonly used criterion is
the minimum of the logarithmic velocity (\(|\eta\frac{dE}{d\eta}|\rightarrow min\)) [Riss1993].

Perturbative or “Projected” CAP

There are multiple strategies for how to incorporate CAPs into an electronic structure calculation.
The most straightforward implementation is to engage the one-electron CAP term starting at the
lowest level of theory (e.g. Hartree-Fock). While conceptually simple, this requires
modification of electronic structure routines to handle the complex objects.
Additionally, this approach requires a unique calculation for each \(\eta\) along the
eigenvalue trajectory, which can become prohibitively expensive for larger systems or
dynamical simulation.

An efficient alternative is to treat the CAP as a first order perturbation, considering only a
small subset of the eigenstates of the real Hamiltonian [Sommerfeld2001]. In this case, the CAP will be
introduced in the basis of the reduced subset of states:

\(W_{uv}=\langle u | W | v \rangle\)
where \(u\) and \(v\) are eigenstates of the real Hamiltonian. Since the CAP is a
one-particle operator, these expressions can easily be evaluated using
the CAP matrix in atomic orbital basis evaluated separately, the one-electron reduced
density matrices (\(\rho\)) for each state, and the set of transition density matrices
(\(\gamma\)) between each pair of states that are obtained from the bound-state
calculation.

\[\begin{split}W_{uv}=
\begin{Bmatrix}
Tr\left[W^{AO}\gamma^{uv} \right] ,& u \neq v \\
Tr\left[W^{AO}\rho^{u} \right] ,& u=v
\end{Bmatrix}\end{split}\]

Once CAP matrix is evaluated the CAP-augmented Hamiltonian is constructed as follows:

\(H^{CAP}=H_0-i\eta W\)
where \(H_0\) is an appropriate zeroth order Hamiltonian obtained from
the electronic structure calculation, and \(W\) is the CAP represented in the subspace.
Diagonalization of this CAP-augmented Hamiltonian
yields \(\eta\)-depdendent eigenvalues that are used to extract
resonance position and width. Importantly, as only a small number of states in considered
(typically less than 30), finding the eigenvalues of the CAP-augmented Hamiltonian has negligible cost in
comparison to the bound-state electronic structure calculation required to get the initial
set of states (u,v,..). Thus, although this perturbative or projected approach introduces
another parameter (number of eigenstates), the overall cost is essentially reduced to that
of a single electronic structure calculation.

With the zeroth order Hamiltonian and the CAP matrix, eigenvalue trajectories can be
generated by means of simple external scripts, and estimates of resonances positions and
widths can be obtained from analysis of the trajectories.

References

	Riss1993(1,2)

	Riss, U. V.; Meyer, H. D. Calculation of Resonance Energies and Widths Using the Complex Absorbing Potential Method. J. Phys. B At. Mol. Opt. Phys. 1993, 26 (23), 4503–4535.

	Sommerfeld2001

	Sommerfeld, T.; Santra, R. Efficient Method to Perform CAP/CI Calculations for Temporary Anions. Int. J. Quantum Chem. 2001, 82 (5), 218–226.

	Reinhardt1982

	Reinhardt, W. P. Complex Coordinates in the Theory of Atomic and Molecular Structure and Dynamics. Annu. Rev. Phys. Chem. 1982, 33 (1), 223–255.

Interfaces

PyOpenCAP officially supports interfaces with the OpenMolcas and PySCF software packages.
For Q-Chem developers, we have also developed an interface with the EOM-CCSD methods in Q-Chem.
Please contact us directly by writing to gayverjr@bu.edu if you are interested in using OpenCAP in tandem with Q-Chem.

	OpenMolcas

	PySCF

OpenMolcas

OpenMolcas [https://molcas.gitlab.io/OpenMolcas/sphinx/] is an open-source quantum chemistry package which specializes
in multiconfigurational approaches to electronic structure. OpenMolcas can be used in tandem
with PyOpenCAP to perform complex absorbing potential (extended)multi-state complete active
space second order perturbation theory [CAP/(X)MS-CASPT2] calculations, which have been
shown to yield accurate energies and lifetimes for metastable electronic states.
Here, we outline the steps of performing these calculations using OpenMolcas and PyOpenCAP.
Some suggested readings are provided at the bottom of the page.

Preliminary: Prepare input orbitals

As with any multi-reference calculation, the choice of active space is crucial for CAP/(X)MS-CASPT2,
and is most often guided by chemical intuition. We refer the reader to the OpenMolcas
manual [https://molcas.gitlab.io/OpenMolcas/sphinx/] for how to prepare input orbitals for a state-averaged RASSCF calculation.

Step 1: Running the OpenMolcas calculation

State-averaged RASSCF

In order to utilize the Perturbative CAP approach, a multi-state excited state calculation must be performed.
In the RASSCF module, the keyword ‘CIROOT’ is used to activate state-averaged RASSCF calculations.

&RASSCF
CIROOT = 10 10 1

Export transition densities with RASSI

To generate the one-particle densities required to construct the CAP matrix, the RASSI
module must be executed with the TRD1 keyword activated. This keyword saves one-particle
transition density matrices between each pair of RASSCF states as well as the one-particle
density matrices for each state to a file titled $Jobname.rassi.h5.

&RASSI
TRD1

Generate effective Hamiltonian with (X)MS-CASPT2

The (X)MS-CASPT2 approach is required to generate an appropriate zeroth Hamiltonian for the
perturbative CAP method. To activate (X)MS-CASPT2 in OpenMolcas, use the Multistate keyword in the CASPT2
module.

&CASPT2
Multistate = all
or
Xmultistate = all

Reference energy

There are multiple strategies for obtaining the reference energy used to define the resonance
position. For anionic resonances, one such strategy is to add an additional diffuse orbital to the active space in order to
mimic ionization, which obtains the resonance and the ground state of the neutral molecule
in a single calculation [Kunitsa2017]. Another strategy (which was used in the tutorial)
is to calculate the ground state of the neutral molecule with CASCI/CASPT2 using the optimized orbitals of the
anionic state.

Step 2: Importing the data to PyOpenCAP

System object

To run a PyOpenCAP calculation, the geometry and basis set must be imported into a System
object. The constructor takes in a Python dictionary as an argument. The relevant
keywords are discussed here, and more information is provided in the keywords page.

Rassi.h5

The rassi.h5 file which contains the one-particle densities also contains the geometry
and basis set information. To read in from rassi, “molcas_rassi” must set as the value to
the key “molecule”, and the path to the file must be set as the value to the key
“basis_file”. Here is an example:

sys_dict = {"molecule": "molcas_rassi","basis_file": "path/to/rassi.h5"}
my_system = pycap.System(sys_dict)

Molden

Molden files generated by OpenMolcas contain the geometry and basis set information.
To read in from molden, “molden” must be set as the value to the key “molecule”, and the
path to the file must be set as the value to the key “basis_file”. Here is an example:

sys_dict = {"molecule": "molden","basis_file": "path/to/file.molden"}
my_system = pycap.System(sys_dict)

Inline(not recommended)

The molecule and basis set can also be specified manually. The “molecule” keyword must
be set to “read”, and then an additional keyword “geometry:” must
be specified, with a string that contains the geometry in xyz format. The “basis_file” keyword
must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from
the MolSSI BSE [https://www.basissetexchange.org/]. Other optional keyword for this section include “bohr_coordinates” and
cart_bf. Please see the keywords section for more details. Up to G-type
functions are supported.

sys_dict = {"geometry": '''N 0 0 1.039
 N 0 0 -1.039
 X 0 0 0.0''',
 "molecule" : "read",
 "basis_file":"path/to/basis.bas",
 "cart_bf":"d",
 "bohr_coordinates:": "true"}
my_system = pycap.System(sys_dict)

One particle densities/zeroth order Hamiltonian

The CAP matrix is computed by the CAP object. The constructor
requires a System, a dictionary containing the CAP parameters, the number of states,
and finally the string “openmolcas”, which denotes the ordering of the atomic orbital basis
set. An example is provided below. Please see the keywords section for more information on
the CAP parameters.

cap_dict = {"cap_type": "box",
 "cap_x":"2.76",
 "cap_y":"2.76",
 "cap_z":"4.88",
 "Radial_precision": "14",
 "angular_points": "110"}
pc = pycap.CAP(my_system,cap_dict,10,"openmolcas")

Before we can compute the CAP matrix in the state basis, we must load in the density matrices.
There are two ways of doing this. The first is to use the read_data() function.
As shown below, we define a dictionary which contains the following keys: “method”
(electronic structure method chosen), “rassi_h5”(density matrices), and “molcas_output”(output file containing effective Hamiltonian).
The effective Hamiltonian can be retrieved using the get_H() function of the CAP object. Currently, only the
effective Hamiltonians from (X)MS-CASPT2 calculations can be parsed from an OpenMolcas output file.
We note that when read_data() is used, our code symmetrizes the
CAP matrix in the state basis.

es_dict = {"method" : "ms-caspt2",
 "molcas_output":"path/to/output.out",
 "rassi_h5":"path/to/rassi.h5"}
pc.read_data(es_dict)
save the effective Hamiltonian for later use
h0 = pc.get_H()

Alternatively, one can load in the densities one at a time using add_tdm().
In our examples below, we load in the matrices from rassi.h5 using the h5py package, and then
pass them as numpy arrays to the CAP object.

import h5py
f = h5py.File('path/to/rassi.h5', 'r')
dms = f["SFS_TRANSITION_DENSITIES"]
spin traced
nbasis = int(np.sqrt(dms.shape[2]))
for i in range(0,10):
 for j in range(i,10):
 dm = 0.5*np.reshape(dms[i][j],(nbasis,nbasis))
 pc.add_tdm(dm,i,j,"openmolcas","path/to/rassi.h5")
 # usually a good idea to symmetrize
 if i!=j:
 pc.add_tdm(dm,,j,i,"openmolcas","path/to/rassi.h5")

Step 3: Computing the CAP matrix

Once all of the densities are loaded, the CAP matrix is computed
using compute_perturb_cap(). The matrix can be retrieved using get_perturb_cap().

pc.compute_perturb_cap()
W_mat=pc.get_perturb_cap()

Note:

When using cartesian d, f, or g-type basis functions, special care must be taken to ensure that the normalization
conventions match what is used by OpenMolcas. In these cases, compute_ao_cap()
and then renormalize() or renormalize_cap()
should be invoked before calling compute_perturb_cap().

pc.compute_ao_cap()
pc.renormalize()
pc.compute_perturb_cap()

Step 4: Generate eigenvalue trajectories

Extracting resonance position and width requires analysis of the eigenvalue trajectories.
Template scripts are provided in the repository [https://github.com/gayverjr/opencap/blob/master/examples/pyopencap/openmolcas/example.py]. Development of automated tools
for trajectory analysis is a subject of future work.

Officially supported methods

The following methods have been benchmarked, and the read_data() function is capable of parsing
output files to obtain the zeroth order Hamiltonian.

	MS-CASPT2

	XMS-CASPT2

Untested (use at your own risk!)

The following methods are capable of dumping densities using the TRD1 keyword of the RASSI module,
but have not been benchmarked for any systems, and the zeroth order Hamiltonian cannot be parsed
from the output file using the read_data() function. Use at your own caution, and please contact us if you
find success using any of these methods so we can add official support!

	(QD/SS)DMRG-(PC/SC)NEVPT2

	SS-CASPT2

	MC-PDFT

Suggested reading

	Phung2020

	Phung, Q. M.; Komori, Y.; Yanai, T.; Sommerfeld, T.; Ehara, M. Combination of a Voronoi-Type Complex Absorbing Potential with the XMS-CASPT2 Method and Pilot Applications. J. Chem. Theory Comput. 2020, 16 (4), 2606–2616.

	Kunitsa2017

	Kunitsa, A. A.; Granovsky, A. A.; Bravaya, K. B. CAP-XMCQDPT2 Method for Molecular Electronic Resonances. J. Chem. Phys. 2017, 146 (18), 184107.

	Al-Saadon2019

	Al-Saadon, R.; Shiozaki, T.; Knizia, G. Visualizing Complex-Valued Molecular Orbitals. J. Phys. Chem. A 2019, 123 (14), 3223–3228.

PySCF

PySCF [http://pyscf.org/] is an ab initio computational chemistry program natively implemented in Python. The major
advantage of using Pyscf in tandem with OpenCAP is that calculations can be performed in
one-shot within the same python script. Since PySCF allows direct control over data structures such as density matrices, the interface between
PySCF and OpenCAP is seamless. Currently, only FCI has been benchmarked, and here we
outline how to perform a calculation using this module.

Preliminary: Running the PySCF calculation

Please consult the PySCF documentation [https://sunqm.github.io/pyscf/] for how run calculations with PySCF. An example
script [https://github.com/gayverjr/opencap/blob/master/examples/pyopencap/pyscf/pyscf_example.py] using FCI is provided in our repository. For FCI, the
zeroth order Hamiltonian is a diagonal matrix whose entries are the energies of the FCI states.

Step 1: Defining the System object

Molden(recommended)

The best way to construct the System object is to import the geometry
and basis set from molden.

molden_dict = {"basis_file":"molden_in.molden","molecule": "molden"}
pyscf.tools.molden.from_scf(myhf,"molden_in.molden")
s = pyopencap.System(molden_dict)

Inline

The molecule and basis set can also be specified inline. The “molecule” keyword must
be set to “read”, and then an additional keyword “geometry” must
be specified, with a string that contains the geometry in xyz format. The “basis_file” keyword
must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from
the MolSSI BSE [https://www.basissetexchange.org/]. Other optional keyword for this section include “bohr_coordinates” and
“cart_bf”. Please see the keywords section for more details. It is recommended to check the
overlap matrix to ensure that the ordering and normalization matches. Up to G-type functions are supported.

pyscf_smat = scf.hf.get_ovlp(mol)
sys_dict = {"geometry": '''N 0 0 1.039
 N 0 0 -1.039
 X 0 0 0.0''',
 "molecule" : "read",
 "basis_file":"path/to/basis.bas",
 "cart_bf":"d",
 "bohr_coordinates:": "true"}
s.check_overlap_mat(pyscf_smat,"pyscf")

Step 1: Defining the CAP object

The CAP matrix is computed by the CAP object. The constructor
requires a System object, a dictionary containing the CAP parameters, the number of states,
and finally the string “pyscf”, which denotes the ordering of the atomic orbital basis
set. An example is provided below. Please see the keywords section for more information on
the CAP parameters.

cap_dict = {"cap_type": "box",
 "cap_x":"2.76",
 "cap_y":"2.76",
 "cap_z":"4.88",
 "Radial_precision": "14",
 "angular_points": "110"}
pc = pycap.CAP(my_system,cap_dict,10,"pyscf")

Step 2: Passing the density matrices

For FCI and related modules, transition densities can be obtained using the trans_rdm1()
function of the FCI [https://sunqm.github.io/pyscf/fci.html] module:

fs = fci.FCI(mol, myhf.mo_coeff)
e, c = fs.kernel()
tdm between ground and 1st excited states
dm1 = fs.trans_rdm1(fs.ci[0],fs.ci[1],myhf.mo_coeff.shape[1],mol.nelec)

Importantly, trans_rdm1 returns the density matrix in MO basis. Thus before passing it to
PyOpenCAP, it must be transformed into AO basis:

dm1_ao = np.einsum('pi,ij,qj->pq', myhf.mo_coeff, dm1, myhf.mo_coeff.conj())

Densities are loaded in one at a time using add_tdm().
Ensure that the indices of each state match those of the zeroth order Hamiltonian.

for i in range(0,len(fs.ci)):
 for j in range(0,len(fs.ci)):
 dm1 = fs.trans_rdm1(fs.ci[i],fs.ci[j],myhf.mo_coeff.shape[1],mol.nelec)
 dm1_ao = np.einsum('pi,ij,qj->pq', myhf.mo_coeff, dm1, myhf.mo_coeff.conj())
 pc.add_tdm(dm1_ao,i,j,"pyscf")

Step 3: Computing the CAP matrix

Once all of the densities are loaded, the CAP matrix is computed
using the compute_perturb_cap() function. The matrix can be retrieved using the
get_perturb_cap() function.

pc.compute_perturb_cap()
W_mat=pc.get_perturb_cap()

Note:

When using cartesian d, f, or g-type basis functions, special care must be taken to ensure that the normalization
conventions match what is used by OpenMolcas. In these cases, compute_ao_cap()
and then renormalize() or renormalize_cap()
should be invoked before calling compute_perturb_cap().

pc.compute_ao_cap()
pc.renormalize_cap(pyscf_smat,"pyscf")
pc.compute_perturb_cap()

Step 4: Generate eigenvalue trajectories

Extracting resonance position and width requires analysis of the eigenvalue trajectories.
A template trajectory analysis script is provided in the
repository [https://github.com/gayverjr/opencap/blob/master/examples/pyopencap/pyscf/cap_trajectory.py]. Development of automated tools for trajectory analysis is a subject of future work.

Officially supported methods

	Full CI

Coming (hopefully) soon

	EOM-CCSD

	ADC

Untested (use at your own risk!)

Any module which one particle transition densities available can be supported.
This includes all methods which can utilize the trans_rdm1 function, including but not limited to:

	MRPT

	CISD

	TDDFT

API

PyOpenCAP exposes two OpenCAP classes to Python: System and CAP. All data returned
by the methods of these objects is passed as a copy, and the underlying C++ code
retains ownership of the original data. Data passed to these objects from Python is passed
by reference, but is not modified in any way by the underlying C++ code.

	pyopencap.System

	pyopencap.CAP

pyopencap.System

The System class is used to store the molecular geometry and the basis set. Upon construction,
it automatically computes the overlap matrix which can be accessed and used to verify the
the ordering of the atomic orbital basis set.

	
class pyopencap.System[source]

	
	
__init__(self: pyopencap.pyopencap_cpp.System, arg0: dict) → None

	Constructs System object.

	
get_overlap_mat(self: pyopencap.pyopencap_cpp.System) → numpy.ndarray[float64[m, n]]

	Returns overlap matrix.

	
check_overlap_mat(self: pyopencap.pyopencap_cpp.System, smat: numpy.ndarray[float64[m, n]], ordering: str, basis_file: str = '') → bool

	Compares input overlap matrix to internal overlap to check basis set ordering.

	
get_basis_ids(self: pyopencap.pyopencap_cpp.System) → str

	Returns a string of the basis function ids. Each ID has the following format:atom index,shell number,l,m

pyopencap.CAP

The CAP class is used to compute the CAP matrix first in AO basis, and then in
wave function basis using the one-particle densities which are passed in. It is also capable of
parsing OpenMolcas output files to obtain the zeroth order Hamiltonian and return it to the user.

	
class pyopencap.CAP[source]

	
	
__init__(self: pyopencap.pyopencap_cpp.CAP, arg0: pyopencap.pyopencap_cpp.System, arg1: dict, arg2: int, arg3: str) → None

	Constructs CAP object.

	
add_tdm(self: pyopencap.pyopencap_cpp.CAP, tdm: numpy.ndarray[float64[m, n]], initial_idx: int, final_idx: int, ordering: str, basis_file: str = '') → None

	Adds spin-traced tdm to CAP object at specified indices. The optional argument basis_file is required when using the OpenMolcas interface, and it must point to the path to the rassi.5 file.

	
add_tdms(self: pyopencap.pyopencap_cpp.CAP, alpha_density: numpy.ndarray[float64[m, n]], beta_density: numpy.ndarray[float64[m, n]], initial_idx: int, final_idx: int, ordering: str, basis_file: str = '') → None

	Adds alpha/beta tdms to CAP object at specified indices. The optional argument basis_file is required when using the OpenMolcas interface, and it must point to the path to the rassi.5 file.

	
compute_ao_cap(self: pyopencap.pyopencap_cpp.CAP) → None

	Computes CAP matrix in AO basis.

	
compute_perturb_cap(self: pyopencap.pyopencap_cpp.CAP) → None

	Computes CAP matrix in state basis using transition density matrices.

	
get_H(self: pyopencap.pyopencap_cpp.CAP) → numpy.ndarray[float64[m, n]]

	Returns zeroth order Hamiltonian read from file.

	
get_ao_cap(self: pyopencap.pyopencap_cpp.CAP) → numpy.ndarray[float64[m, n]]

	Returns CAP matrix in AO basis.

	
get_perturb_cap(self: pyopencap.pyopencap_cpp.CAP) → numpy.ndarray[float64[m, n]]

	Returns CAP matrix in state basis.

	
read_data(self: pyopencap.pyopencap_cpp.CAP, es_dict: dict) → None

	Reads electronic structure data specified in dictionary.

	
renormalize(self: pyopencap.pyopencap_cpp.CAP) → None

	Re-normalizes AO CAP using electronic structure data.

	
renormalize_cap(self: pyopencap.pyopencap_cpp.CAP, smat: numpy.ndarray[float64[m, n]], ordering: str, basis_file: str = '') → None

	Re-normalizes AO CAP matrix using input overlapmatrix.

Keywords

PyOpenCAP uses Python dictionaries which contain key/value pairs to specify the parameters of the calculation.
Here, we outline the valid key/value combinations. Importantly, all key value pairs should be specified as strings.

System keywords

The System object contains the basis set and geometry information, which can be obtained
in a few different ways.

	Keyword

	Required

	Valid values

	Description

	molecule

	yes

	molden,qchem_fchk
rassi_h5,inline

	Specifies which format to read the molecular geometry. If “inline” is chosen,
the “geometry” keyword is also required.

	geometry

	no

	See below

	Specifies the geometry in an inline format described below. Required when the
“molecule” field is set to “inline”.

	basis_file

	yes

	path to basis file

	Specifies the path to the basis file. When “molecule” is set to “molden”,”rassi_h5”, or “qchem_fchk”,
this field should be set to a path to a file of the specified type. When “molecule” is set to
“inline”, this field should be set to a path to a basis set file formatted in “Psi4” style.

	cart_bf

	no

	‘d’, ‘df’, ‘dfg’
‘dg’, ‘f’, ‘g’, ‘fg’

	Controls the use of pure or Cartesian angular forms of GTOs. The letters corresponding to the angular momenta listed in this field will be expanded in cartesians,
those not listed will be expanded in pure GTOs. For example, “df” means d and f-type
functions will be cartesian, and all others will be pure harmonic. This keyword is only active
when “molecule” is set to “inline”.

	bohr_coordinates

	no

	“True” or “False”

	Set this keyword to true when the coordinates specified in “geometry” keyword are in bohr units. This keyword is only active when “molecule” is set to “inline”.

When specifying the geometry inline, use the following format:

atom1 x-coordinate y-coordinate z-coordinate

atom2 x-coordinate y-coordinate z-coordinate ...

Ghost centers with zero nuclear charge can be specified using the symbol “X”.

Units are assumed to be Angstroms unless the bohr_coordinates keyword is set to True.

Example:

sys_dict = {"geometry": '''N 0 0 1.039
 N 0 0 -1.039
 X 0 0 0.0''',
 "molecule" : "read",
 "basis_file":"path/to/basis.bas",
 "cart_bf":"d",
 "bohr_coordinates:": "true"}

CAP keywords

PyOpenCAP supports Voronoi and Box-type absorbing potentials. We also allow some customization
of the numerical grid used for integration. Please see https://github.com/dftlibs/numgrid for
more details on the radial_precision and angular_points keywords.

General Keywords

	Keyword

	Required

	Default/valid values

	Description

	cap_type

	yes

	“box” or “voronoi”

	Type of absorbing potential.

	radial_precision

	no

	“14”

	Radial precision for numerical integration grid. A precision of 1x10^(-N), where N is the value specified is used.

	angular_points

	no

	“590”

	Number of angular points used for the grid. See https://github.com/dftlibs/numgrid for allowed numbers of points.

Box CAP

A quadratic potential which encloses the system in a 3D rectangular box.

\[W= W_x + W_y +W_z\]

\[\begin{split}W_{\alpha} = \begin{Bmatrix}
0 &\left|r_{\alpha}\right| < R_{\alpha}^0 \\
\left(r_{\alpha} - R_{\alpha}^0 \right)^2 & \left|r_{\alpha}\right| > R_{\alpha}^0
\end{Bmatrix}\end{split}\]

	Keyword

	Description

	cap_x

	Onset of CAP in x-direction. Specify in bohr units.

	cap_y

	Onset of CAP in y-direction. Specify in bohr units.

	cap_y

	Onset of CAP in z-direction. Specify in bohr units.

Smooth Voronoi CAP

A quadratic potential which uniformly wraps around the system at a specified cutoff radius.
The edges between between Voronoi cells are smoothed out to make the potential more amenable
to numerical integration [Sommerfeld2015].

\[\begin{split}W(\vec{r}) = \begin{Bmatrix}
0 &r_{WA} \leq r_{cut} \\
(r_{WA} - r_{cut})^2 & r_{WA} > r_{cut}
\end{Bmatrix}\end{split}\]

\[\begin{align}\begin{aligned}r_{WA}(\vec{r}) = \sqrt{\frac{\sum_{i} w_{i}|\vec{r}-\vec{R}_i|^2}{\sum_{i} w_{i}}}\\ w_{i} = \frac{1}{(|\vec{r}-\vec{R}_i|^2-r_{min}^2+1 a.u.)^2}\end{aligned}\end{align} \]

\[r_{min} = \min\limits_{i}{|\vec{r}-\vec{R}_i|}\]

	Keyword

	Description

	r_cut

	Cutoff radius for Voronoi CAP. Specify in bohr units.

Example

cap_dict = {"cap_type": "box",
 "cap_x":"2.76",
 "cap_y":"2.76",
 "cap_z":"4.88",
 "Radial_precision": "14",
 "angular_points": "110"}

Electronic structure keywords

The read_data() function is able to parse the zeroth order Hamiltonian
and load the densities when supplied with an appropriate formatted dictionary. All keywords
must be specified to use this function. Currently, this is only supported for calculations
using the OpenMolcas interface.

	Keyword

	Description

	method

	Electronic structure method used in the calculation. Valid options are “MS-CASPT2” and “XMS-CASPT2”.

	molcas_output

	Path to OpenMolcas output file.

	rassi_h5

	Path to OpenMolcas rassi.h5 file.

Example:

es_dict = {"method" : "ms-caspt2",
 "molcas_output":"path/to/output.out",
 "rassi_h5":"path/to/rassi.h5"}
pc.read_data(es_dict)

References

	Sommerfeld2015

	Sommerfeld, T.; Ehara, M. Complex Absorbing Potentials with Voronoi Isosurfaces Wrapping Perfectly around Molecules. J. Chem. Theory Comput. 2015, 11 (10), 4627–4633.

Index

 _
 | A
 | C
 | G
 | R
 | S

_

 	
 	__init__() (pyopencap.CAP method)

 	(pyopencap.System method)

A

 	
 	add_tdm() (pyopencap.CAP method)

 	
 	add_tdms() (pyopencap.CAP method)

C

 	
 	CAP (class in pyopencap)

 	check_overlap_mat() (pyopencap.System method)

 	
 	compute_ao_cap() (pyopencap.CAP method)

 	compute_perturb_cap() (pyopencap.CAP method)

G

 	
 	get_ao_cap() (pyopencap.CAP method)

 	get_basis_ids() (pyopencap.System method)

 	
 	get_H() (pyopencap.CAP method)

 	get_overlap_mat() (pyopencap.System method)

 	get_perturb_cap() (pyopencap.CAP method)

R

 	
 	read_data() (pyopencap.CAP method)

 	
 	renormalize() (pyopencap.CAP method)

 	renormalize_cap() (pyopencap.CAP method)

S

 	
 	System (class in pyopencap)

 All modules for which code is available

	pyopencap.CAP

	pyopencap.System

	pyopencap.pyopencap_cpp

 Source code for pyopencap.CAP

'''Copyright (c) 2020 James Gayvert

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.'''

from .pyopencap_cpp import CAP as cap_cpp

[docs]class CAP(cap_cpp):
 pass

 Source code for pyopencap.System

'''Copyright (c) 2020 James Gayvert

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in all
 copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 SOFTWARE.'''

from .pyopencap_cpp import System as sys

[docs]class System(sys):
 pass

 _static/minus.png

_static/plus.png

_static/file.png

_images/res_trajectory.png
Resonance trajectory

0.00 1 —— Uncorrected trajectory
—8— Corrected trajectory

—0.05 A

L _0.10 1

Im(E)

—0.15 A

—0.20 A

2.150 2.175 2.200 2.225 2.250 2.275 2.300 2.325 2.350
Re(E)[eV]

_images/trajectories.png
Eigenvalue trajectories

nav.xhtml

 Table of Contents

 		
 PyOpenCAP Documentation

 		
 Installation

 		
 Install with pip (recommended)

 		
 Build from source

 		
 Tutorial

 		
 Theory

 		
 Resonances and Non-Hermitian Quantum Mechanics

 		
 Complex Absorbing Potential

 		
 Perturbative or “Projected” CAP

 		
 References

 		
 Interfaces

 		
 OpenMolcas

 		
 Preliminary: Prepare input orbitals

 		
 Step 1: Running the OpenMolcas calculation

 		
 Step 2: Importing the data to PyOpenCAP

 		
 Step 3: Computing the CAP matrix

 		
 Step 4: Generate eigenvalue trajectories

 		
 Officially supported methods

 		
 Untested (use at your own risk!)

 		
 Suggested reading

 		
 PySCF

 		
 Preliminary: Running the PySCF calculation

 		
 Step 1: Defining the System object

 		
 Step 1: Defining the CAP object

 		
 Step 2: Passing the density matrices

 		
 Step 3: Computing the CAP matrix

 		
 Step 4: Generate eigenvalue trajectories

 		
 Officially supported methods

 		
 Coming (hopefully) soon

 		
 Untested (use at your own risk!)

 		
 API

 		
 pyopencap.System

 		
 pyopencap.CAP

 		
 Keywords

 		
 System keywords

 		
 CAP keywords

 		
 References

