
pyopencap Documentation

pyopencap

Apr 12, 2022





CONTENTS

1 Supported Packages 3

2 Supported Methods 5

3 Supported Potentials 7

4 Other features 9

5 In development 11

6 Acknowledgements 13

7 Contents 15

Bibliography 49

Index 51

i



ii



pyopencap Documentation

PyOpenCAP is the Python API for OpenCAP, an open-source software aimed at extending the functionality of quan-
tum chemistry packages to describe resonances. PyOpenCAP uses the pybind11 library to expose C++ classes and
methods, allowing calculations to be driven within a Python interpreter.

PyOpenCAP is currently capable of processing quantum chemistry data in order to perform ‘projected’ complex
absorbing potential calculations on metastable electronic states. These calculations are able to extract resonance
position and width at the cost of a single bound-state electronic structure calculation.

To get started, please see our Getting Started page.

If you have questions or need support, please open an issue on GitHub, or contact us directly at gayverjr@bu.edu.

PyOpenCAP is released under the MIT license.
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SUPPORTED PACKAGES

• OpenMolcas

• PySCF

• Q-Chem

• Psi4

• Columbus
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https://molcas.gitlab.io/OpenMolcas/sphinx/
http://pyscf.org/
https://www.q-chem.com/
http://www.psicode.org/
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SUPPORTED METHODS

• EOM-CC

• FCI

• MS-CASPT2 (and extended variants)

• TDDFT

• ADC (through ADCC)

• MR-CI family of methods
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SUPPORTED POTENTIALS

• Box (analytical integrals are now available!)

• Smooth Voronoi

• Custom CAP functions

Please see the keywords section for more details.

7



pyopencap Documentation

8 Chapter 3. Supported Potentials



CHAPTER

FOUR

OTHER FEATURES

• Python based eigenvalue trajectory analysis tools

• Custom numerical integration grids
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IN DEVELOPMENT

• Feshbach projection approaches

• Tools for dyanmics on complex potential energy surfaces
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7.1 Installation

7.1.1 Install with pip (recommended)

pip install pyopencap
# or
pip3 install pyopencap

Precompiled Python wheels are available on Pypi for almost all Linux systems and most MacOS systems, for Python
versions 3.6 and later.

7.1.2 Build from source

Dependencies

Compiling PyOpenCAP from source requires first installing the following dependencies:

• C++ compiler with full C++17 language support and standard libraries

• Python3 interpreter and development libraries: version >= 3.6

• CMake: version >= 3.12

• HDF5: hierarchical data format, version >= 1.10

• Eigen: linear algebra library, version >= 3.3

All of these dependencies are available through standard package managers such as Homebrew, Conda, and yum/apt-
get on Linux.

Compiler

For Mac/Linux users, any compiler which fully supports the C++17 standard should work (e.g GCC 7.x or later). If
you are unsure, try updating to the latest version of your compiler.

Building the package

If your operating system/Python environment is not covered by any of our pre-built wheels, the command pip
install pyopencap will download the tarball from Pypi and try to compile from source. You can also clone
the repository and install a local version:

git clone https://github.com/gayverjr/opencap.git

cd opencap

(continues on next page)
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pip install .

Compiling from source will take several minutes. To monitor your progress, you can run pip with the –verbose flag.

To ensure that the installation was successful, return to your home directory, start a Python shell, and type:

import pyopencap

If you cloned the repository, you can run the tests by entering the pyopencap directory, and running pytest.

7.2 Getting Started

Constructing the System object

The System object of PyOpenCAP contains the geometry and basis set information, as well as the overlap matrix.
The constructor takes in a Python dictionary as an argument, and understands a specific set of keywords . There are
four equivalent ways of specifying the geometry and basis set: qchem_fchk, rassi_h5, molden, and inline. Here, we’ll
use the rassi_h5 file.

sys_dict = {"molecule": "rassi_h5","basis_file": "path/to/rassi/file.h5"}
s = pyopencap.System(sys_dict)
smat = s.get_overlap_mat()

Constructing the CAP object

The CAP matrix is computed by the CAP object. The constructor requires a System object, a dictionary containing
the CAP parameters, and the number of states.

nstates = 10
cap_dict = {"cap_type": "box",

"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

pc = pyopencap.CAP(s,cap_dict,nstates)

Parsing electronic structure data from file

The read_data() function can read in the effective Hamiltonian and densities in one-shot when passed a Python
dictionary with the right keywords.

es_dict = {"method" : "ms-caspt2",
"package": "openmolcas",

"molcas_output":"path/to/output/file.out",
"rassi_h5": "path/to/rassi/file.h5"}

pc.read_data(es_dict)
h0 = pc.get_H()

Passing densities in RAM

Alternatively, one can load in the densities one at a time using the add_tdms() or add_tdm() functions. The
density matrices should be in atomic orbital basis, with the same atomic orbital ordering as the System (which can
be verify using check_overlap_matrix). The example below shows how one might pass the densities from a
PySCF calculation:

16 Chapter 7. Contents
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s.check_overlap_mat(pyscf_smat,"pyscf")
pc = pyopencap.CAP(s,cap_dict,10)
for i in range(0,10):

for j in range(i,10):
dm1 = fs.trans_rdm1(fs.ci[i],fs.ci[j],myhf.mo_coeff.shape[1],mol.nelec)
dm1_ao = np.einsum('pi,ij,qj->pq', myhf.mo_coeff, dm1, myhf.mo_coeff.conj())
pc.add_tdm(dm1_ao,i,j,"pyscf")
if i!=j:

pc.add_tdm(dm1_ao,j,i,"pyscf")

Once all of the densities are loaded, the CAP matrix is computed using the compute_projected_cap() function.
The matrix can be retrieved using the get_projected_cap() function.

>>> pc.compute_projected_cap()
>>> W_mat=pc.get_projected_cap()

We now have our zeroth order Hamiltonian (stored in h0) and our CAP matrix(W_mat) in the state basis. Extracting
resonance position and width requires analysis of the eigenvalue trajectories.

Analysis

PyOpenCAP provides user friendly tools for analysis of eigenvalue trajectories.

The CAPHamiltonian contains functions aimed at diagonalization of the CAP Hamiltonian over a range of eta
values. Assuming one has already obtained H0 and W in the state basis as numpy matrices, it can be constructed as
such:

from pyopencap.analysis.CAPTrajectory import CAPHamiltonian
eta_list = np.linspace(0,5000,101)
eta_list = np.around(eta_list * 1E-5,decimals=5)
CAPH = CAPHamiltonian(H0=h0,W=mat)
# equivalently
CAPH = CAPHamiltonian(pc=pc)
CAPH.run_trajectory(eta_list,cap_lambda=0.0)

One can easily plot the eigenvalue spectrum in au or eV (relative to a given reference energy) as follows:

# total energies
plt.plot(np.real(CAPH.total_energies),np.imag(CAPH.total_energies),'ro')
plt.show()
# excitation energies
plt.plot(np.real(CAPH.energies_ev(ref_energy)),np.imag(CAPH.energies_ev(ref_energy)),
→˓'ro')
plt.show()

To analyze a given trajectory, use track_state()

traj = CAPH.track_state(1,tracking="overlap")

traj is now a EigenvalueTrajectory object, which contains helpful functions for analysis. One can plot raw
and corrected trajectories:

plt.plot(np.real(traj.energies_ev(ref_energy)),np.imag(traj.energies_ev(ref_energy)),
→˓'-ro')
plt.plot(np.real(traj.energies_ev(ref_energy,corrected=True)),np.imag(traj.energies_
→˓ev(ref_energy,corrected=True)),'-bo')

There are also functions to help find the optimal value of the CAP strength parameter (and therefore, best estimate of
resonance position and width) for uncorrected/corrected trajectories:

7.2. Getting Started 17
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uc_energy,uc_eta_opt = traj.find_eta_opt()
corr_energy,corr_eta_opt = traj.find_eta_opt(corrected=True)

For more information, please see the documentation for the CAPHamiltonian and EigenvalueTrajectory
classes.

See more

Please see the notebooks in our repository for detailed examples which demonstrate the full functionality of PyOpen-
CAP.

7.3 Theory

7.3.1 Resonances and Non-Hermitian Quantum Mechanics

Electronic resonances are metastable electronic states with finite lifetimes embedded in the ionization/detachment
continuum. Common examples include temporary anions formed by electron attachment, and core-excited and core-
ionized states which can undergo Auger decay or similar relaxation pathways. These states are not part of the usual
𝐿2 Hilbert space of square integrable functions, and instead belong to the continuous spectrum of the electronic
Hamiltonian. Theoretical description of resonances is generally not possible by means of conventional bound-state
quantum chemistry methods, and special techniques are required to obtain accurate energies and lifetimes.

Non-Hermitian quantum mechanics (NHQM) techniques provide an attractive approach that enables adaptation of
existing quantum chemistry methodologies to treat metastable electronic states. In NHQM formalisms, a resonance
appears as a single square-integrable eigenstate of a non-Hermitian Hamiltonian, associated with a with a complex
eigenvalue:

𝐸 = 𝐸𝑟𝑒𝑠 − 𝑖Γ/2.

The real part of the energy (𝐸𝑟𝑒𝑠) is the resonance position. The imaginary part (Γ/2) is the half-width, which is
inversely proportional to the lifetime of the state [Reinhardt1982].

7.3.2 Complex Absorbing Potential

Complex absorbing potentials (CAPs) are imaginary potentials added to the Hamiltonian, and they are routinely used
for evaluation of resonance parameters. In this context, CAPs transform a resonance into a single square integrable
state, rendering it accessible by means of standard bound-state techniques. To this end, the electronic Hamiltonian is
augmented with an imaginary potential:

𝐻𝐶𝐴𝑃 = 𝐻 − 𝑖𝜂𝑊

where 𝜂 is the CAP strength parameter, and W is a real potential which vanishes in the vicinity of the molecular system
and grows with distance.

Since the CAP-augmented Hamiltonian depends on the strength of the CAP, a choice has to be made on the optimal
value of 𝜂 that provides best estimates of the resonance position and width. In a complete one-electron basis, the
exact resonance position and width are obtained in the limit of an infinitesimally weak CAP (𝜂 → 0+). In practice
when finite basis sets are used, an optimal CAP strength 𝜂𝑜𝑝𝑡 is found by locating a stationary point on the eigenvalue
trajectory E(𝜂). A commonly used criterion is the minimum of the logarithmic velocity (|𝜂 𝑑𝐸

𝑑𝜂 | → 𝑚𝑖𝑛) [Riss1993].
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7.3.3 Projected CAP

There are multiple strategies for how to incorporate CAPs into an electronic structure calculation. The most straightfor-
ward implementation is to engage the one-electron CAP term starting at the lowest level of theory (e.g. Hartree-Fock).
While conceptually simple, this requires modification of electronic structure routines to handle the complex objects.
Additionally, this approach requires a unique calculation for each 𝜂 along the eigenvalue trajectory, which can become
prohibitively expensive for larger systems or dynamical simulation.

An efficient alternative is to treat the CAP as a first order perturbation, considering only a small subset of the eigenstates
of the real Hamiltonian [Sommerfeld2001]. In this so called subspace projection scheme, the CAP will be introduced
in the correlated basis of the reduced subset of states:

𝑊𝐶𝐵
𝑢𝑣 = ⟨𝑢|𝑊 |𝑣⟩

where 𝑢 and 𝑣 are eigenstates of the real Hamiltonian. Since the CAP is a one-particle operator, these expressions can
easily be evaluated using the CAP matrix in atomic orbital basis evaluated separately, the one-electron reduced density
matrices (𝜌) for each state, and the set of transition density matrices (𝛾) between each pair of states that are obtained
from the bound-state calculation.

𝑊𝐶𝐵
𝑢𝑣 =

{︂
𝑇𝑟

[︀
𝑊𝐴𝑂𝛾𝑢𝑣

]︀
, 𝑢 ̸= 𝑣

𝑇𝑟
[︀
𝑊𝐴𝑂𝜌𝑢

]︀
, 𝑢 = 𝑣

}︂
Once CAP matrix is evaluated the CAP-augmented Hamiltonian is constructed as follows:

𝐻𝐶𝐴𝑃 = 𝐻0 − 𝑖𝜂𝑊𝐶𝐵

where 𝐻0 is an appropriate zeroth order Hamiltonian obtained from the electronic structure calculation, and 𝑊𝐶𝐵 is
the CAP represented in the correlated basis. Diagonalization of this CAP-augmented Hamiltonian yields 𝜂-dependent
eigenvalues that are used to extract resonance position and width. Importantly, as only a small number of states in
considered (typically less than 30), finding the eigenvalues of the CAP-augmented Hamiltonian has negligible cost
in comparison to the bound-state electronic structure calculation required to get the initial set of states (u,v,..). Thus,
although this perturbative or projected approach introduces another parameter (number of eigenstates), the overall cost
is essentially reduced to that of a single electronic structure calculation.

With the zeroth order Hamiltonian and the CAP matrix, eigenvalue trajectories can be generated by means of simple
external scripts, and estimates of resonances positions and widths can be obtained from analysis of the trajectories.

7.3.4 Continuum Remover CAP

One of the major challenges of analyzing eigenvalue trajectories is the appearance of of unphysical stationary points.
To separate the physical complex energy stabilized points from the non physical ones, Moiseyev and coworkers
[Moiseyev2009] have proposed adding an additional artificial real valued potential to the CAP Hamiltonian.

𝐻𝐶𝐴𝑃 = 𝐻0 + (𝜆− 𝑖𝜂)𝑊𝐶𝐵

This approach is known as continuum remover-CAP or CR-CAP. The idea behind this CR-CAP is that the true reso-
nance wave function is insensitive to such a potential due to its bound-like nature, while artificial stabilization points
corresponding to the scattering states would be significantly affected by the additional real valued potential. 𝜆 can be
positive or negative, and there is usually no need to optimize 𝜆, as it is only used for the purpose of identifying the
true resonance stabilization point.

7.3. Theory 19
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7.3.5 References

7.4 Interfaces

PyOpenCAP officially supports interfaces with the OpenMolcas, Q-Chem, Psi4, Columbus, and PySCF software
packages.

7.4.1 OpenMolcas

OpenMolcas is an open-source quantum chemistry package which specializes in multiconfigurational approaches to
electronic structure. OpenMolcas can be used in tandem with PyOpenCAP to perform complex absorbing poten-
tial (extended)multi-state complete active space second order perturbation theory [CAP/MS-CASPT2] calculations,
which have been shown to yield accurate energies and lifetimes for metastable electronic states. Here, we outline the
steps of performing these calculations using OpenMolcas and PyOpenCAP. Some suggested readings are provided at
the bottom of the page.

Step 1: Running OpenMolcas calculation

To generate the one-particle densities required to construct the CAP matrix, the RASSI module must be executed with
the TRD1 keyword activated. When using XMS-CASPT2, RMS-CASPT2, or other variants which utilize rotated
CASSCF wave functions, the CAP matrix will eventually be rotated into the new basis using the rotation matrix in the
output (U^dagger*W*U). RASSI will save transition density matrices between each pair of CASSCF states as well as
the one-particle density matrices for each state to a file titled $Jobname.rassi.h5.

Export transition densities with RASSI

&RASSI
TRD1

Generate effective Hamiltonian with MS-CASPT2

The MS-CASPT2 approach is required to generate an appropriate zeroth Hamiltonian for the projected CAP method.
To activate MS-CASPT2 in OpenMolcas, use the Multistate keyword in the CASPT2 module.

&CASPT2
Multistate = all

See the OpenMolcas manual for other variants of MS-CASPT2 which can be activated in the &CASPT2 section.

Step 2: Importing the data to PyOpenCAP

System object

To run a PyOpenCAP calculation, the geometry and basis set must be imported into a System object. The constructor
takes in a Python dictionary as an argument. The relevant keywords are discussed here, and more information is
provided in the keywords page.

Rassi.h5

The rassi.h5 file which contains the one-particle densities also contains the geometry and basis set information. To
read in from rassi, “molcas_rassi” must set as the value to the key “molecule”, and the path to the file must be set as
the value to the key “basis_file”. Here is an example:

20 Chapter 7. Contents
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sys_dict = {"molecule": "molcas_rassi","basis_file": "path/to/rassi.h5"}
my_system = pyopencap.System(sys_dict)

Molden

Molden files generated by OpenMolcas contain the geometry and basis set information. To read in from molden,
“molden” must be set as the value to the key “molecule”, and the path to the file must be set as the value to the key
“basis_file”. Here is an example:

sys_dict = {"molecule": "molden","basis_file": "path/to/file.molden"}
my_system = pyopencap.System(sys_dict)

Inline(not recommended)

The molecule and basis set can also be specified manually. The “molecule” keyword must be set to “read”, and then
an additional keyword “geometry:” must be specified, with a string that contains the geometry in xyz format. The
“basis_file” keyword must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from the
MolSSI BSE. Other optional keyword for this section include “bohr_coordinates” and cart_bf. Please see the keywords
section for more details. Up to G-type functions are supported.

sys_dict = {"geometry": '''N 0 0 1.039
N 0 0 -1.039
X 0 0 0.0''',

"molecule" : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

my_system = pyopencap.System(sys_dict)

One particle densities/zeroth order Hamiltonian

The CAP matrix is computed by the CAP object. The constructor requires a System, a dictionary containing the
CAP parameters, the number of states, and finally the string “openmolcas”, which denotes the ordering of the atomic
orbital basis set. An example is provided below. Please see the keywords section for more information on the CAP
parameters.

cap_dict = {"cap_type": "box",
"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

nstates = 10
pc = pyopencap.CAP(my_system,cap_dict,nstates)

Before we can compute the CAP matrix in the state basis, we must load in the density matrices. The best way is
to use the read_data() function. As shown below, we define a dictionary which contains the following keys:
“package”(openmolcas), “method” (electronic structure method chosen), “rassi_h5”(density matrices), and “mol-
cas_output”(output file containing effective Hamiltonian). The effective Hamiltonian can be retrieved using the
get_H() function of the CAP object. Currently, only effective Hamiltonians from MS-CASPT2 calculations can
be parsed from an OpenMolcas output file.

es_dict = { "package": "openmolcas",
"method" : "ms-caspt2",
"molcas_output":"path/to/output.out",
"rassi_h5":"path/to/rassi.h5"}

pc.read_data(es_dict)

(continues on next page)
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(continued from previous page)

# save the effective Hamiltonian for later use
h0 = pc.get_H()

Step 3: Computing the CAP matrix

Once all of the densities are loaded, the CAP matrix is computed using compute_projected_cap(). The matrix
can be retrieved using get_projected_cap().

pc.compute_projected_cap()
W_mat=pc.get_projected_cap()

Note:

When using cartesian d, f, or g-type basis functions, special care must be taken to ensure that the normalization
conventions match what is used by OpenMolcas. In these cases, compute_ao_cap() and then renormalize()
or renormalize_cap() should be invoked before calling compute_projected_cap().

pc.compute_ao_cap(cap_dict)
pc.renormalize()
pc.compute_projected_cap()

Step 4: Generate and analyze eigenvalue trajectories

H0 and W, or the CAP object can be used to construct a CAPHamiltonian object.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(H0=H0,W=W_mat)
# equivalently
CAPH = CAPHamiltonian(pc=pc)

See the analysis section for more details.

Officially supported methods

The following methods have been benchmarked, and the read_data() function is capable of parsing output files to
obtain the zeroth order Hamiltonian.

• MS-CASPT2, and other variants (e.g. XMS-CASPT2) which utilize unitary rotations of the original CASSCF
states. The CAP matrix will be rotated into the new basis using the rotation matrix.

Untested (use at your own risk!)

The following methods are capable of dumping densities using the TRD1 keyword of the RASSI module, but have
not been benchmarked for any systems, and the zeroth order Hamiltonian cannot be parsed from the output file using
the read_data() function. Use at your own caution, and please contact us if you find success using any of these
methods so we can add official support!

• (QD)DMRG-(PC/SC)NEVPT2

• SS-CASPT2

• MC-PDFT

22 Chapter 7. Contents
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Suggested reading

7.4.2 PySCF

PySCF is an ab initio computational chemistry program natively implemented in Python. The major advantage of
using Pyscf in tandem with OpenCAP is that calculations can be performed in one-shot within the same python script.
Since PySCF allows direct control over data structures such as density matrices, the interface between PySCF and
OpenCAP is seamless.

Step 1: Defining the System object

Molden(recommended)

The best way to construct the System object is to import the geometry and basis set from a molden file generated by
a PySCF. This ensures proper ordering of the AO basis set.

molden_dict = {"basis_file":"molden_in.molden","molecule": "molden"}
pyscf.tools.molden.from_scf(myhf,"molden_in.molden")
s = pyopencap.System(molden_dict)

Inline

The molecule and basis set can also be specified inline. The “molecule” keyword must be set to “read”, and then
an additional keyword “geometry” must be specified, with a string that contains the geometry in xyz format. The
“basis_file” keyword must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from
the MolSSI BSE. Other optional keyword for this section include “bohr_coordinates” and “cart_bf”. Please see the
keywords section for more details. It is recommended to check the overlap matrix to ensure that the ordering and
normalization matches. Up to G-type functions are supported.

pyscf_smat = scf.hf.get_ovlp(mol)
sys_dict = {"geometry": '''N 0 0 1.039

N 0 0 -1.039
X 0 0 0.0''',

"molecule" : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

s.check_overlap_mat(pyscf_smat,"pyscf")

Step 1: Defining the CAP object

The CAP matrix is computed by the CAP object. The constructor requires a System object, a dictionary containing
the CAP parameters, and the number of states. An example is provided below. Please see the keywords section for
more information on the CAP parameters.

nstates = 10
cap_dict = {"cap_type": "box",

"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

pc = pyopencap.CAP(my_system,cap_dict,nstates)

7.4. Interfaces 23
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Step 2: Passing the density matrices

The simplest interface is with the FCI modules. Transition densities can be obtained using the trans_rdm1()
function:

fs = fci.FCI(mol, myhf.mo_coeff)
e, c = fs.kernel()
# tdm between ground and 1st excited states
dm1 = fs.trans_rdm1(fs.ci[0],fs.ci[1],myhf.mo_coeff.shape[1],mol.nelec)

Importantly, trans_rdm1 returns the density matrix in MO basis. Thus before passing it to PyOpenCAP, it must be
transformed into AO basis:

dm1_ao = np.einsum('pi,ij,qj->pq', myhf.mo_coeff, dm1, myhf.mo_coeff.conj())

Densities are loaded in one at a time using add_tdm(). Ensure that the indices of each state match those of the
zeroth order Hamiltonian.

for i in range(0,len(fs.ci)):
for j in range(0,len(fs.ci)):

dm1 = fs.trans_rdm1(fs.ci[i],fs.ci[j],myhf.mo_coeff.shape[1],mol.nelec)
dm1_ao = np.einsum('pi,ij,qj->pq', myhf.mo_coeff, dm1, myhf.mo_coeff.conj())
pc.add_tdm(dm1_ao,i,j,"pyscf")

Note:

The interface with PySCF is not restricted to the FCI module. The add_tdm() function is completely general; it
requires only that the densities are in AO basis, and that the basis set ordering matches the system. Examples for ADC,
EOM-EA-CCSD, and TDA-TDDFT are provided in the repository.

Step 3: Computing the CAP matrix

Once all of the densities are loaded, the CAP matrix is computed using the compute_projected_cap() function.
The matrix can be retrieved using the get_projected_cap() function.

pc.compute_projected_cap()
W_mat=pc.get_projected_cap()

Note:

When using cartesian d, f, or g-type basis functions, special care must be taken to ensure that the normalization
conventions match what is used by OpenMolcas. In these cases, compute_ao_cap() and then renormalize()
or renormalize_cap() should be invoked before calling compute_projected_cap().

pc.compute_ao_cap(cap_dict)
pc.renormalize_cap(pyscf_smat,"pyscf")
pc.compute_projected_cap()
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Step 4: Generate and analyze eigenvalue trajectories

H0 and W can be used to construct a CAPHamiltonian object. In many cases, it can be advantageous to use the
export() function, which generates an OpenCAP formatted output file, which can be used for later analysis.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(H0=H0,W=W_mat)
CAPH.export("output.out")

See the analysis section for more details.

Officially supported methods

• Full CI

• ADC (through ADCC)

• TDA-TDDFT

Untested (use at your own risk!)

Any module which one particle transition densities available can be supported. This includes all methods which can
utilize the trans_rdm1 function, including but not limited to:

• MRPT

7.4.3 QChem

PyOpenCAP supports an interface with the Q-Chem quantum chemistry package.

Importing data

System object

The geometry and basis set can be imported into a System object using .fchk files.

import pyopencap
sys_dict = {"molecule": "qchem_fchk","basis_file": "path/to/qc.fchk"}
my_system = pyopencap.System(sys_dict)

CAP object

Densities can be read in from .fchk files, and the zeroth order Hamiltonian can be read from Q-Chem output files for
EOM-CC calculations. The following keywords are required in the Q-Chem input to export the densities to .fchk:

CC_TRANS_PROP=2
STATE_ANALYSIS=1
GUI=2

The following snippet can be used to read the data from a Q-Chem output and properly formatted .fchk file, and
calculate the CAP matrix:
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cap_dict = {"cap_type": "box",
"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

nstates = 10
pc = pyopencap.CAP(my_system,cap_dict,nstates)
# read in densities

es_dict = {"method" : "eom",
"package": "qchem",

"qchem_output":"path/to/output.out",
"qchem_fchk":"path/to/qc.fchk"}

pc.read_data(es_dict)
# save the zeroth order Hamiltonian for later use
h0 = pc.get_H()
pc.compute_projected_cap()
W_mat=pc.get_projected_cap()

Generate and analyze eigenvalue trajectories

H0 and W, or the CAP object can be used to construct a CAPHamiltonian object.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(H0=H0,W=W_mat)
# equivalently
CAPH = CAPHamiltonian(pc=pc)

Additionally, Q-Chem (starting from version 5.4) natively implements Projected CAP-EOM-CC and Projected CAP-
ADC methods, and prints the necessary matrices to the output. PyOpenCAP can parse these output files to generate
CAPHamiltonian objects.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(output="proj-eomcc.out",irrep="B2g")
CAPH = CAPHamiltonian(output="proj-adc.out",onset="3000")

See the analysis section for more details.

7.4.4 PSI4

PSI4 is a C++/Python core that easily interfaces with and is extended by standalone community projects. The major
advantage of using PSI4 in tandem with PyOpenCAP is that calculations can be performed in one-shot within the same
python script. Since PSI4 allows direct control over data structures such as density matrices, the interface between
PSI4 and PyOpenCAP is seamless. Our interface has been tested for the Psi4 dev build, which is available via conda:

conda install -c psi4/label/dev psi4
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Step 1: Defining the System object

Molden(recommended)

The best way to construct the System object is to import the geometry and basis set from a molden file generated by
a PSI4. This ensures proper ordering of the AO basis set.

psi4.molden(wfn, 'molden_in.molden')
molden_dict = {"basis_file":"molden_in.molden","molecule": "molden"}
s = pyopencap.System(molden_dict)

Inline

The molecule and basis set can also be specified inline. The “molecule” keyword must be set to “read”, and then
an additional keyword “geometry” must be specified, with a string that contains the geometry in xyz format. The
“basis_file” keyword must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from
the MolSSI BSE. Other optional keyword for this section include “bohr_coordinates” and “cart_bf”. Please see the
keywords section for more details. It is recommended to check the overlap matrix to ensure that the ordering and
normalization matches. Up to G-type functions are supported.

E, wfn = psi4.energy('scf', return_wfn=True)
mints = psi4.core.MintsHelper(wfn.basisset())
S_mat = np.asarray(mints.ao_overlap())
sys_dict = {"geometry": '''N 0 0 1.039

N 0 0 -1.039
X 0 0 0.0''',

"molecule" : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

s.check_overlap_mat(S_mat,"psi4")

Step 1: Defining the CAP object

The CAP matrix is computed by the CAP object. The constructor requires a System object, a dictionary containing
the CAP parameters, and the number of states. An example is provided below. Please see the keywords section for
more information on the CAP parameters.

cap_dict = {"cap_type": "box",
"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

nstates = 10
pc = pyopencap.CAP(my_system,cap_dict,nstates)
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Step 2: Passing the density matrices

The simplest interface is with the full CI module. One can request one particle densities to be calculated by using the
opdm and tdm options:

psi4.set_options({"opdm":True,"num_roots":nstates,"tdm":True,"dipmom":True})
ci_energy, ci_wfn = psi4.energy('FCI', return_wfn=True)

Densities are now available through the get_opdm function. One must be careful to ensure that the densities are
represented in AO basis before passing to PyOpenCAP using the add_tdm() function:

for i in range(0,nstates):
for j in range(i,nstates):

opdm_mo = ci_wfn.get_opdm(i, j, "SUM", True)
opdm_so = psi4.core.triplet(ci_wfn.Ca(), opdm_mo, ci_wfn.Ca(), False, False,

→˓True)
opdm_ao = psi4.core.Matrix(n_bas,n_bas)
opdm_ao.remove_symmetry(opdm_so,so2ao)
pc.add_tdm(opdm_ao.to_array(),i,j,"psi4")
if not i==j:

pc.add_tdm(opdm_ao.to_array().conj().T,j,i,"psi4")

Please see the PSI4 documentation for more details, or our repository for an example.

Note:

The interface with Psi4 is not restricted to FCI. The add_tdm() function is completely general; it requires only that
the densities are in AO basis, and that the basis set ordering matches the system. An example for ADC is provided in
the repository.

Step 3: Computing the CAP matrix

Once all of the densities are loaded, the CAP matrix is computed using the compute_projected_cap() function.
The matrix can be retrieved using the get_projected_cap() function.

pc.compute_projected_cap()
W_mat=pc.get_projected_cap()

Step 4: Generate and analyze eigenvalue trajectories

H0 and W can be used to construct a CAPHamiltonian object. In many cases, it can be advantageous to use the
export() function, which generates an OpenCAP formatted output file, which can be used for later analysis.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(H0=H0,W=W_mat)
CAPH.export("output.out")

See the analysis section for more details.
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Officially supported methods

• Full CI

• ADC (through ADCC)

7.4.5 Columbus

COLUMBUS is a collection of programs designed primarily for multi-reference (MR) calculations on electronic
ground and excited states of atoms and molecules. Here, we outline the steps of performing CAP-MRCI calcula-
tions with Columbus and OpenCAP, though the steps are broadly applicable to any of the methods. These steps have
only been tested for the serial version of Columbus.

Step 1: Running MRCI calculation

When running the MRCI calculation, ensure that transition moments between each pair of relevant states are requested.
Once the MRCI calculation is finished, navigate to the WORK directory. Assuming one has set up the input properly,
the following files will be needed

• cid1trfl: files for each pair of states, including state density matrices (i.e.
cid1trfl.FROMdrt1.state1TOdrt1.state1)

• ciudgsm: file which contains final MRCI energies and convergence information

• tranls: file which contains information on active space/frozen orbitals, which is necessary to fully reconstruct
density matrices in AO basis

Also, the MO coefficients will be needed, which are located in the MOLDEN directory:

• molden_mo_mc.sp: optimized MO coefficients from MCSCF calculation in .molden format

Step 2: Generating human readable density matrix files

The next step is to convert the cid1trfl files into a human readable format. The Columbus utility iwfmt.x can be used
for this purpose. We provide a bash script in the main repository utilities/write_iwfmt.bash which can
be executed in the WORK directory to generate these files, assuming that the $COLUMBUS environment variable is
properly set.

Step 2: Importing the data to PyOpenCAP

System object

To run a PyOpenCAP calculation, the geometry and basis set must be imported into a System object. The constructor
takes in a Python dictionary as an argument.

Molden (recommended)

Molden files generated by Columbus contain the geometry and basis set information. To read in from molden,
“molden” must be set as the value to the key “molecule”, and the path to the file must be set as the value to the
key “basis_file”. Here is an example:

sys_dict = {"molecule": "molden","basis_file": "path/to/file.molden"}
my_system = pyopencap.System(sys_dict)
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Inline(not recommended)

The molecule and basis set can also be specified manually. The “molecule” keyword must be set to “read”, and then
an additional keyword “geometry:” must be specified, with a string that contains the geometry in xyz format. The
“basis_file” keyword must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from the
MolSSI BSE. Other optional keyword for this section include “bohr_coordinates” and cart_bf. Please see the keywords
section for more details. Up to G-type functions are supported.

sys_dict = {"geometry": '''N 0 0 1.039
N 0 0 -1.039
X 0 0 0.0''',

"molecule" : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

my_system = pyopencap.System(sys_dict)

One particle densities/zeroth order Hamiltonian

The CAP matrix is computed by the CAP object. The constructor requires a System, a dictionary containing the
CAP parameters, the number of states, and finally the string “openmolcas”, which denotes the ordering of the atomic
orbital basis set. An example is provided below. Please see the keywords section for more information on the CAP
parameters.

cap_dict = {"cap_type": "box",
"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88"}

nstates = 10
pc = pyopencap.CAP(my_system,cap_dict,nstates)

Before we can compute the CAP matrix in the state basis, we must load in the density matrices. Due to the large
number of files generated by Columbus, we have provided a colparser utility to manage the data.

A colparser object is instantiated using the tranls file and the MO coefficients:

parser = colparser('data_files/molden_mo_mc.sp', 'data_files/tranls')

The zeroth order Hamiltonian, which is diagonal for MR-CI, can be read in from the ciudgsm file as follows:

H0 = parser.get_H0(filename='data_files/ciudgsm')

Densities are loaded in one at a time using pyopencap.analysis.colparser.sdm_ao() / pyopencap.
analysis.colparser.tdm_ao() and add_tdm(). To specify which tdm/sdm to parse, one can use state and
optionally DRT indices:

for i in range(0,nstates):
for j in range(i,nstates):

if i==j:
# Indices start from 0 in pyopencap, but from 1 in Columbus

→˓file names
dm1_ao = parser.sdm_ao(i+1,data_dir='data_files',DRTn=1)
pc.add_tdm(dm1_ao,i,j,'molden')

else:
# Indices start from 0 in pyopencap, but from 1 in Columbus

→˓file names
dm1_ao = parser.tdm_ao(i+1, j+1,drtFrom=1,drtTo=1,data_dir=

→˓'data_files')

(continues on next page)
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(continued from previous page)

pc.add_tdm(dm1_ao,i,j,'molden')
pc.add_tdm(dm1_ao.conj().T,j,i,'molden')

pc.compute_projected_cap()
W=pc.get_projected_cap()

In this example, the files are assumed to located in ./data_files with names cid1trfl.
FROMdrt{drtFrom}.state{i}TOdrt{drtTo}.state{i}.iwfmt, which is consistent with them
having been generated by the utilities/write_iwfmt.bash script.

Alternatively, one can absolute paths:

dm1_ao = parser.sdm_ao(1,filename='data_files/cid1trfl.FROMdrt1.state1TOdrt1.state1.
→˓iwfmt')
pc.add_tdm(dm1_ao,0,0,'molden')

Step 4: Generate and analyze eigenvalue trajectories

H0 and W, or the CAP object can be used to construct a CAPHamiltonian object.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(H0=H0,W=W_mat)
# equivalently
CAPH = CAPHamiltonian(pc=pc)

See the analysis section for more details.

Officially supported methods

MR-CISD has been officially tested, though the interface should work with other methods. Please contact us if you
find success or have issues using any other methods so we can add official support!

7.5 Analysis Tools

PyOpenCAP provides user friendly tools for analysis of eigenvalue trajectories in the form of CAPHamiltonian
and EigenvalueTrajectory objects.

Basic usage

The CAPHamiltonian contains functions aimed at diagonalization of the CAP Hamiltonian over a range of eta
values. Assuming one has already obtained H0 and W in the state basis as numpy matrices:

from pyopencap.analysis.CAPTrajectory import CAPHamiltonian
eta_list = np.linspace(0,2000,101)
eta_list = eta_list * 1E-5
CAPH = CAPHamiltonian(H0=h0,W=mat)
CAPH.run_trajectory(eta_list,cap_lambda=0.0)
# track the 4th state
traj = CAPH.track_state(4,tracking="overlap")

Alternatively, one can read in H0 and W from OpenCAP/Q-Chem output files:
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from pyopencap.analysis.CAPTrajectory import CAPHamiltonian
eta_list = np.linspace(0,2000,101)
eta_list = eta_list * 1E-5
CAPH = CAPHamiltonian(output_file="path/to/output.out")
CAPH.run_trajectory(eta_list,cap_lambda=0.0)
# track the 4th state
traj = CAPH.track_state(4,tracking="overlap")

In both snippets, traj is now a EigenvalueTrajectory object, which contains helpful functions for analysis. For
example, one can find the optimal value of the CAP strength parameter for uncorrected/corrected trajectories:

uc_energy,uc_eta_opt = traj.find_eta_opt()
corr_energy,corr_eta_opt = traj.find_eta_opt(corrected=True)

For more information, please see the documentation for the CAPHamiltonian and EigenvalueTrajectory
classes.

7.5.1 CAPHamiltonian

This section briefly describes how to use the CAPHamiltonian object to generate eigenvalue trajectories.

Initialization

CAPHamiltonian objects can be initialized in one of two ways. The first is to pass H0 and W as numpy arrays:

from pyopencap.analysis.CAPTrajectory import CAPHamiltonian
CAPH = CAPHamiltonian(H0=h0,W=mat)

The other is to read them in from an OpenCAP output file, or from a Q-Chem output file generated by a Projected
CAP-EOM-CC or Projected CAP-ADC calculation.

CAPH = CAPHamiltonian(output="path/to/output.out")

If one wishes to exclude some of the states from the analysis, this can be accomplished through the by placing their
indices in a list (starting from 0) and passing it into the exclude_states keyword argument:

exclude_states = [2,5,7]
CAPH = CAPHamiltonian(H0=h0,W=mat,exclude_states=exclude_states)

Similarly, the include_states argument includes only the desired states. Note that these two keywords are incompatible.

include_states = [0,1,2,3,4]
CAPH = CAPHamiltonian(H0=h0,W=mat,include_states=include_states)

Importantly, in all cases, the W matrix is assumed to be pre-multiplied by a factor of -1.0.
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Diagonalization

The run_trajectory() function diagonalizes the CAP Hamiltonian over a range of eta values (and at a specified
value of the cap lambda parameter if using a CR-CAP).

eta_list = np.linspace(0,2000,101)
eta_list = eta_list * 1E-5
CAPH.run_trajectory(eta_list,cap_lambda=0.0)

Since the W matrix is assumed to be multiplied by a factor of -1.0 upon instantiation, the following matrix is actually
diagonalized at each step:

𝐻𝐶𝐴𝑃 = 𝐻0 + (𝑖𝜂 − 𝜆)𝑊

and each eigenpair is stored in a Root object. After all of the diagonalizations are finished, individual states can be
tracked using the track_state() function:

traj = CAPH.track_state(4,tracking="overlap")

The traj variable is a EigenvalueTrajectory object, which contains helpful functions for analysis. Indices
for states start from 0, and there are two options for tracking states: “overlap” (the default), and “energy”. See
EigenvalueTrajectory for more details.

Visualization

The energies of all states computed are stored in the total_energies instance variable of the CAPHamiltonian object.
This can very useful for graphical searches e.g.

import matplotlib.pyplot as plt
import numpy as np
plt.plot(np.real(CAPH.total_energies),np.imag(CAPH.total_energies),'ro')
plt.show()

There is also a function energies_ev() which returns the excitation energies in eV with respect to specified
reference energy.

E_ev = CAPH.energies_ev(ref_energy)
plt.plot(np.real(E_ev),np.imag(CAPH.energies_ev(E_ev),'ro')
plt.show()

class pyopencap.analysis.CAPHamiltonian(pc=None, H0=None, W=None, output=None, ir-
rep='', onset='')

Projected CAP Hamiltonian handler for generating eigenvalue trajectories.

The instance variables H0,W etc. are only set after run_trajectory is executed. The original matrices
passed/parsed when the object is constructed are stored in _H0, _W, etc. This makes it easy to run multiple
trajectories with different states included in the projection scheme without having to construct a new object.

H0
Zeroth order Hamiltonian in state basis

Type np.ndarray of float: default=None

W
CAP matrix in state basis. -1 prefactor is assumed.

Type np.ndarray of float: default=None
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nstates
Number of states

Type int

total_energies
Energies of all states found by repeated diagonalization of CAP Hamiltonian

Type list of float

etas
List of CAP strengths in trajectory.

Type list of float

cap_lambda
Real CAP strength used for continuum remover CAP. Set to 0.0 by default.

Type float

__init__(pc=None, H0=None, W=None, output=None, irrep='', onset='')
Initializes CAPHamiltonian object from H0 and W matrix in state basis.

Object can be initialized in one of two ways. The user can pass H0 and W directly as numpy matrices, or
they can specify a path to a properly formatted output file (either OpenCAP or Q-Chem) which contains
these two matrices.

W matrix is assumed to already have a -1 prefactor, as that is how OpenCAP output is formatted.

Parameters

• pc (CAP: default=None) – PyOpenCAP CAP object

• H0 (np.ndarray of float: default=None) – Zeroth order Hamiltonian in
state basis

• W (np.ndarray of float: default=None) – CAP matrix in state basis. -1
prefactor is assumed.

• output (str: default=None) – Path to Q-Chem or OpenCAP output file.

• irrep (str: default=None) – Title of irreducible representation of state of in-
terest. Only compatible with Q-Chem projected CAP-EOM-CC outputs. Set to ‘all’ to
include all symmetries in CAP projection.

• onset (str: default=None) – Title of CAP onset. Only compatible with Q-Chem
projected CAP-ADC outputs.

energies_ev(ref_energy)
Returns excitation energies of all calculated states in eV with respect to specified reference energy.

Parameters ref_energy (float) – Reference energy

Returns E_eV – Excitation energies in eV with respect to specified reference energy.

Return type list of floats

export(finame)
Exports Zeroth order Hamiltonian and CAP matrix to an OpenCAP formatted output file for further anal-
ysis. Useful for saving the results of an expensive electronic structure calculation performed in a python
environment.

Parameters finame (str) – File handle to export data.
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run_trajectory(eta_list, cap_lambda=0.0, exclude_states=None, include_states=None)
Diagonalizes CAP Hamiltonian over range of eta values.

CAP Hamiltonian is defined as H^CAP = H0 + i*eta*W - cap_lambda * W. W matrix is assumed to
already have a -1 prefactor, as that is how OpenCAP output is formatted. Recommended range for eta_list
is between 1E-5 and 1E-2, though this can vary widely based on system and CAP shape.

Parameters

• eta_list (iterable object) – List of eta values to use

• cap_lambda (float, default=0.0) – Real CAP strength to use for continuum
remover CAP

• exclude_states (list of int, default=None) – List of states to exclude
from subspace projection. Not compatible with include_states parameter.

• include_states (list of int, default=None) – List of states to include in
subspace projection. Not compatible with exclude_states parameter.

track_state(state_idx, tracking='overlap', correction='density')
Diagonalizes CAP Hamiltonian over range of eta values.

CAP Hamiltonian is defined as H^CAP = H0 + i*eta*W - cap_lambda * W. CAP matrix W is assumed to
already have a -1 prefactor.

Parameters

• state_idx (int) – Index of state to track

• tracking (str, default="overlap") – Method to use to track the state. Options
are “overlap”, which tracks based on eigenvector overlap, and “energy” which tracks based
on energy.

• correction (str, default="density") – Choice of correction scheme. Either
“density” or “derivative”.

Returns traj – Eigenvalue trajectory for further analysis.

Return type EigenvalueTrajectory

7.5.2 EigenvalueTrajectory

This section briefly describes how to use the EigenvalueTrajectory object to analyze eigenvalue trajectories.

Initialization

EigenvalueTrajectory objects are generated by the track_state() function of the CAPHamiltonian
class. The state index i starts from 0, and the first state in the trajectory is the ith eigen pair generated by the first
diagonalization at 𝜂 = 0.
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State Tracking

At each diagonalization of the CAP Hamiltonian, left and right 𝜂-dependent eigenpairs are computed and bi-
orthogonalized. States are tracked using using one of two criterion: overlap and energy, which is controlled by
the tracking keyword argument of track_state().

When overlap tracking is used (the default), at each step, the state with maximum overlap with the previous state is
chosen as the next point on the trajectory. The overlap is simply calculated as the absolute value of the dot product
between the right eigenvectors.

When energy tracking is used, at each step, the state with the minimum difference in energy from the previous state
is chosen. Since the energies are complex, the difference is computed as the modulus of the difference of the two
complex energies.

Each state in the trajectory is stored as a Root object stored in the states attribute. Lists of uncorrected energies and 𝜂
values (in order of smallest to largest 𝜂 value) are also stored in the uncorrected_energies and etas class attributes for
convenience.

Corrected Trajectories

Raw uncorrected energies obtained from diagonalizaiton of the CAP Hamiltonian can be sensitive to CAP onset and
basis set quality. Practitioners of CAP theory often report so called corrected energies, the exact form of which may
vary from publication to publication.

We implement two forms of 1st-order corrections: density and derivative, which is controlled by the correction
keyword argument of track_state().

The default is the density matrix correction of [Jagau2014] :

𝑈(𝜂) = 𝐸(𝜂) + 𝑖𝜂𝑇𝑟[𝛾(𝜂)𝑊 ],

where the trace expression is evaluated using the matrix elements of the CAP in the correlated basis:

𝑇𝑟[𝛾(𝜂)𝑊 ] =
∑︀

𝑘𝑙 𝑐
𝐿
𝑘 (𝜂)𝑐𝑅𝑙 (𝜂)𝑊𝐶𝐵

𝑘𝑙 ,

and 𝑐𝐿 and 𝑐𝑅 xrefer to the components of the bi-orthogonalized left and right eigenvectors respectively.

One can also use the first-order correction of [Cederbaum2002], which has the form:

𝑈(𝜂) = 𝐸(𝜂) − 𝜂 𝜕𝐸(𝜂)
𝜕𝜂 .

The two approaches can be related to one another by the Hellman-Feynman theoreom, and in our experience yield
nearly identical results.

Corrected trajectories are automatically computed when one obtains an EigenvalueTrajectory object generated
by the track_state() function, and are stored in the class attribute corrected_energies.

# the various options for state tracking and corrections
traj = CAPH.track_state(1,tracking="energy",correction="density")
traj = CAPH.track_state(1,tracking="overlap",correction="derivative")
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𝜂𝑜𝑝𝑡

As briefly outlined in the theory, the key to any CAP calculation is to find the optimal value of the CAP strength
parameter 𝜂𝑜𝑝𝑡. The EigenvalueTrajectory class has a function find_eta_opt for exactly that purpose.
For uncorrected trajectories, 𝜂𝑜𝑝𝑡 is calculated as

𝑚𝑖𝑛|𝜂 𝑑𝐸
𝑑𝜂 |

For corrected trajectories, 𝜂𝑜𝑝𝑡 is calculated as

𝑚𝑖𝑛|𝜂 𝑑𝑈
𝑑𝜂 |

The derivative is calculated numerically by means of finite differences.

uc_energy,uc_eta_opt = traj.find_eta_opt()
corr_energy,corr_eta_opt = traj.find_eta_opt(corrected=True)

The presence of nonphysical stationary points can sometimes result in this function returning smaller values of 𝜂𝑜𝑝𝑡
than desired. One can specify the start_idx keyword argument to begin the search starting from a specified index along
the trajectory.

uc_energy,uc_eta_opt = traj.find_eta_opt(start_idx=20)

Visualization

It can often be helpful to visualize trajectories graphically. In addition to access to the class attributes uncor-
rected_energies and corrected_energies, we also provide some helper functions which process the data in useful ways
for visualization.

For instance, energies_ev() returns the excitation energies in eV with respect to specified reference energy.

import matplotlib.pyplot as plt
UC_ev = traj.energies_ev(ref_energy)
Corr_ev = traj.energies_ev(ref_energy,corrected=True)
plt.plot(np.real(UC_ev),np.imag(UC_ev),'ro', label='Uncorrected')
plt.plot(np.real(Corr_ev),np.imag(Corr_ev),'ro', label='Corrected')
plt.show()

get_logarithmic_velocities() returns the value of 𝜂 𝜕𝐸(𝜂)
𝜕𝜂 (or |𝜂 𝑑𝑈

𝑑𝜂 | → 𝑚𝑖𝑛 if the corrected keyword
argument is set to True) for each point along the trajectory.

derivs = traj.get_logarithmic_velocities()
plt.plot(traj.etas,derivs)
plt.show()

References

class pyopencap.analysis.EigenvalueTrajectory(state_idx, init_roots, W, track-
ing='overlap', correction='density')

Eigenvalue trajectory generated by repeated diagonalizations of CAP Hamiltonian over range of eta values.

States are tracked using either eigenvector overlap or energy criterion. Corrected energies are obtained using
density matrix or first order correction.

roots
List of states in trajectory.

Type list of Root
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uncorrected_energies
List of uncorrected energies in trajectory.

Type list of float

corrected_energies
List of corrected energies in trajectory.

Type list of float

W
CAP matrix in state basis. -1 prefactor is assumed.

Type np.ndarray of float: default=None

etas
List of CAP strengths in trajectory.

Type list of float

tracking
Method to use to track the state

Type str, default=”overlap”

correction
Choice of correction scheme. Either “density” or “derivative”.

Type str, default=”density”

__init__(state_idx, init_roots, W, tracking='overlap', correction='density')
Initializes EigenvalueTrajectory object, which tracks a state starting from the first diagonalization at eta =
0.

Parameters

• state_idx (int) – Index of state to track

• init_roots (list of Root) – Initial set of roots generated by diagonalization at eta = 0

• W (np.ndarray of float: default=None) – CAP matrix in state basis. -1
prefactor is assumed.

• tracking (str, default="overlap") – Method to use to track the state

• correction (str, default="density") – Choice of correction scheme. Either
“density” or “derivative”.

energies_ev(ref_energy, corrected=False)
Returns excitation energies of all states in trajectory in eV with respect to specified reference energy.

Parameters

• ref_energy (float) – Reference energy

• corrected (bool, default=False) – Set to true if analyzing corrected trajectory

Returns E_eV – Excitation energies in eV with respect to specified reference energy.

Return type list of floats

find_eta_opt(corrected=False, start_idx=1, end_idx=- 1, ref_energy=0.0, units='au', re-
turn_root=False)

Finds optimal cap strength parameter for eigenvalue trajectory, as defined by eta_opt = min|eta*dE/deta|.

The range of self.etas[start_idx:end_idx] (in python slice notation) is searched for the optimal value of
CAP strength parameter.
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Parameters

• corrected (bool, default=False) – Set to true if searching for stationary point
on corrected trajectory

• start_idx (int, default=1) – Starting slice index

• end_idx (int, default=1) – Ending slice index

• ref_energy (float, default=0.0) – Reference energy to define excitation en-
ergy.

• units (str, default="au") – Options are “au” or “eV”

• return_root (bool, default=False) – Whether to return Root object associ-
ated with optimal value of eta

Returns

• E_res (complex float) – Complex energy at optimal value of eta

• eta_opt (float) – Optimal value of eta

• root (Root) – Only returned when return_root is set to true

get_energy(eta, corrected=False, ref_energy=0.0, units='au', return_root=False)
Returns total energy at given value of eta.

Note that if the eta provided is not in self.etas, the nearest value will be used.

Parameters

• eta (float) – Value of CAP strength parameter

• corrected (bool, default=False) – Set to true if analyzing corrected trajectory

• ref_energy (float, default=0.0) – Reference energy to define excitation en-
ergy.

• units (str, default="au") – Options are “au” or “eV”

• return_root (bool, default=False) – Whether to return Root object associ-
ated with optimal value of eta

Returns

• E (float) – Energy at given value of eta

• root (Root) – Only returned when return_root is set to true

get_logarithmic_velocities(corrected=False)
Returns eta*dE/deta for each point on eigenvalue trajectory.

Useful for plotting when dealing with multiple potential stationary points.

Parameters corrected (bool, default=False) – Set to true if analyzing corrected tra-
jectory

Returns derivs – eta*dE/deta for each point on eigenvalue trajectory

Return type np.array of float
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7.5.3 Root

class pyopencap.analysis.Root(energy, eta, Reigvc, Leigvc)
Root obtained from diagonalizing CAP Hamiltonian at given value of eta.

eta
CAP strength parameter

Type float

energy
Total energy of state

Type float

Reigvc
Bi-orthogonalized right eigenvector for state

Type list of float

Leigvc
Bi-orthogonalized left eigenvector for state

Type list of float

__init__(energy, eta, Reigvc, Leigvc)
Initializes root object.

Parameters

• eta (float) – CAP strength parameter

• energy (float) – Total energy of state

• eigvc (list of float) – Eigenvector for state

7.5.4 Columbus Parser

class pyopencap.analysis.colparser(molden_file, tranls)
A class that parses COLUMBUS electronic structure package generated files to generate state density and tran-
sition density matrices for projected-CAP calculation on MR-CI level.

__init__(molden_file, tranls)
Initializes the colparser class

Parameters

• molden_file (str) – molden MO filename (generated in MOLDEN/ folder in
COLUMBUS calculation Directory)

• tranls (str) – Path to tranls file generated by Columbus in WORK directory

get_H0(correction_type='eci+pople', filename='ciudgsm')
Parses energies from a Columbus ciudgsm file.

Parameters

• correction_type (str, optional) – One of {‘eci+pople’, ‘eci’, ‘eci+dv1’,
‘eci+dv2’, ‘eci+dv3’ }. Default is ‘eci+pople’

• filename (str, optional) – Path to Columbus ciudgsm file located in WORK di-
rectory. If unspecified, assumed to be ‘./ciudgsm’.
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Notes

See https://aip.scitation.org/doi/pdf/10.1063/1.5144267 for discussion of corrections.

Returns H0_mat – Diagonal hamiltonian with CI energies.

Return type np.ndarray

mo_summary()
Prints information about active space and symmetries of MOs.

Returns Total number of basis functions (nbft) Number of basis functions in each symmetry
block (NBPSY). Number of orbitals in each of the symmetry blocks.(NMPSY<= NBSPSY)
Number of frozen orbitals in each of the symmetry blocks (NFCSY ). Character labels for
the symmetry blocks (SLABEL).

Return type str

sdm_ao(i, DRTn=1, data_dir='.', filename=None)
Returns state density matrix in atomic orbital basis by parsing a Columbus cid1trfl.iwfmt file.

Parameters

• i (int) – State index

• DRTn (int, optional) – DRT index

• data_dir (str, optional) – Directory to search for .iwfmt file. Should not be used
in conjunction with filename kwarg

• filename (str, optional) – Path to file to parse. If not specified, the filename
is assumed to be cid1trfl.FROMdrt{drtFrom}.state{i}TOdrt{drtTo}.state{i}.iwfmt in the
current directory.

Returns sdm – State density matrix in AO basis

Return type np.ndarray

sdm_ao_cid1fl(i, DRTn)
Read CI state densities from state density cid1fl*.iwfmt files.

Currently NYI.

Parameters

• i (int) – State index

• DRTn (int) – DRT index

Raises NotImplementedError –

Returns State density matrix in AO basis

Return type np.ndarray

tdm_ao(iFROM, iTO, drtFrom=1, drtTo=1, data_dir='.', filename=None)
Returns transition density matrix in atomic orbital basis by parsing a Columbus cid1trfl.iwfmt file.

Parameters

• iFROM (int) – Initial state index and final state indices respectively.

• iTO (int) – Initial state index and final state indices respectively.

• drtFrom (int, optional) – DRT indices

• drtTo (int, optional) – DRT indices

7.5. Analysis Tools 41

https://aip.scitation.org/doi/pdf/10.1063/1.5144267


pyopencap Documentation

• data_dir (str, optional) – Directory to search for .iwfmt file. Should not be used
in conjunction with filename kwarg

• filename (str, optional) – Path to file to parse. If not specified, the filename is
assumed to be cid1trfl.FROMdrt{drtFrom}.state{iFrom}TOdrt{drtTo}.state{iTO}.iwfmt
in the current directory.

Returns tdm – Transition density matrix in AO basis

Return type np.ndarray

7.6 Custom CAPs and Grids

Starting with PyOpenCAP version 1.2, users can now specify customized CAP functions and numerical integration
grids.

7.6.1 Custom CAPs

Python functions with the signature vector<double>,vector<double>,vector<double>,
vector<double> --> vector<double> can be used as CAP functions by the CAP class for numerical
integration. An example is provided below:

# this defines a box CAP of with cutoffs of 3 bohr in each coordinate
def box_cap(x,y,z,w):

cap_values = []
cap_x = 3.00
cap_y = 3.00
cap_z = 3.00
for i in range(0,len(x)):

result = 0
if np.abs(x[i])>cap_x:

result += (np.abs(x[i])-cap_x) * (np.abs(x[i])-cap_x)
if np.abs(y[i])>cap_y:

result += (np.abs(y[i])-cap_y) * (np.abs(y[i])-cap_y)
if np.abs(z[i])>cap_z:

result += (np.abs(z[i])-cap_z) * (np.abs(z[i])-cap_z)
result = w[i]*result
cap_values.append(result)

return cap_values

cap_dict = {"cap_type": "custom"}
pc = pyopencap.CAP(s,cap_dict,5,box_cap)

7.6.2 Custom Grids

Custom grids for numerical integration can be specified using the compute_cap_on_grid function. The argu-
ments are assumed to be 1D arrays of equal size. The function can be called repeatedly for a cumulative sum in the
case of atomic grids. An example is provided below:

for i in range(0,Natoms):
x,y,z,w = get_grid_for_atom(atoms[i])
pc.compute_cap_on_grid(x,y,z,w)

# final sum is cumulative
pc.compute_projected_cap()

42 Chapter 7. Contents



pyopencap Documentation

7.7 API

PyOpenCAP exposes two OpenCAP classes to Python: System and CAP.

7.7.1 pyopencap.System

The System class is used to store the molecular geometry and the basis set. Upon construction, it automatically
computes the overlap matrix which can be accessed and used to verify the the ordering of the atomic orbital basis set.

class pyopencap.System

__init__(self: pyopencap.pyopencap_cpp.System, sys_dict: dict)→ None
Constructs System object from python dictionary.

get_overlap_mat(self: pyopencap.pyopencap_cpp.System, ordering: str = 'molden', basis_file: str
= '')→ numpy.ndarray[numpy.float64[m, n]]

Returns overlap matrix. Supported orderings: pyscf, openmolcas, qchem, psi4, molden.

check_overlap_mat(self: pyopencap.pyopencap_cpp.System, smat:
numpy.ndarray[numpy.float64[m, n]], ordering: str, basis_file: str = '')
→ bool

Compares input overlap matrix to internal overlap matrix to check basis set ordering. Supported orderings:
pyscf, openmolcas, qchem, psi4, molden.

get_basis_ids(self: pyopencap.pyopencap_cpp.System)→ str
Returns a string of the basis function ids. Each ID has the following format:atom index,shell number,l,m

7.7.2 pyopencap.CAP

The CAP class is used to compute the CAP matrix first in AO basis, and then in wave function basis using the one-
particle densities which are passed in. It is also capable of parsing OpenMolcas output files to obtain the zeroth order
Hamiltonian and return it to the user.

class pyopencap.CAP

__init__(*args, **kwargs)
Overloaded function.

1. __init__(self: pyopencap.pyopencap_cpp.CAP, system: pyopencap.pyopencap_cpp.System,
cap_dict: dict, nstates: int) -> None

Constructs CAP object from system, cap dictionary, and number of states.

2. __init__(self: pyopencap.pyopencap_cpp.CAP, system: pyopencap.pyopencap_cpp.System,
cap_dict: dict, nstates: int, cap_func: Callable[[List[float], List[float], List[float], List[float]],
List[float]]) -> None

Constructs CAP object from system, cap dictionary, number of states, and cap function.

add_tdm(self: pyopencap.pyopencap_cpp.CAP, tdm: numpy.ndarray[numpy.float64[m, n]], initial_idx:
int, final_idx: int, ordering: str, basis_file: str = '')→ None

Adds spin-traced tdm to CAP object at specified indices. The optional argument basis_file is required
when using the OpenMolcas interface, and it must point to the path to the rassi.5 file. Supported orderings:
pyscf, openmolcas, qchem, psi4, molden.
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add_tdms(self: pyopencap.pyopencap_cpp.CAP, alpha_density: numpy.ndarray[numpy.float64[m, n]],
beta_density: numpy.ndarray[numpy.float64[m, n]], initial_idx: int, final_idx: int, ordering:
str, basis_file: str = '')→ None

Adds alpha/beta tdms to CAP object at specified indices. The optional argument basis_file is required
when using the OpenMolcas interface, and it must point to the path to the rassi.5 file. Supported orderings:
pyscf, openmolcas, qchem, psi4, molden.

compute_ao_cap(self: pyopencap.pyopencap_cpp.CAP, cap_dict: dict, cap_func:
Callable[[List[float], List[float], List[float], List[float]], List[float]] = None)
→ None

Computes CAP matrix in AO basis.

compute_projected_cap(self: pyopencap.pyopencap_cpp.CAP)→ None
Computes CAP matrix in state basis using transition density matrices.

get_H(self: pyopencap.pyopencap_cpp.CAP)→ numpy.ndarray[numpy.float64[m, n]]
Returns zeroth order Hamiltonian read from file.

get_ao_cap(self: pyopencap.pyopencap_cpp.CAP, ordering: str = 'molden', basis_file: str = '') →
numpy.ndarray[numpy.float64[m, n]]

Returns CAP matrix in AO basis. Supported orderings: pyscf, openmolcas, qchem, psi4, molden.

get_projected_cap(self: pyopencap.pyopencap_cpp.CAP) → numpy.ndarray[numpy.float64[m,
n]]

Returns CAP matrix in state basis.

read_data(self: pyopencap.pyopencap_cpp.CAP, es_dict: dict)→ None
Reads electronic structure data specified in dictionary.

renormalize(self: pyopencap.pyopencap_cpp.CAP)→ None
Re-normalizes AO CAP using electronic structure data.

renormalize_cap(self: pyopencap.pyopencap_cpp.CAP, smat: numpy.ndarray[numpy.float64[m,
n]], ordering: str, basis_file: str = '')→ None

Re-normalizes AO CAP matrix using input overlap matrix.

compute_cap_on_grid(self: pyopencap.pyopencap_cpp.CAP, x: numpy.ndarray[numpy.float64],
y: numpy.ndarray[numpy.float64], z: numpy.ndarray[numpy.float64], w:
numpy.ndarray[numpy.float64])→ None

Computes CAP matrix on supplied grid. Sum will cumulated for each successive grid until com-
pute_projected_cap is called.

7.8 Keywords

PyOpenCAP uses Python dictionaries which contain key/value pairs to specify the parameters of the calculation. Here,
we outline the valid key/value combinations. Importantly, all key value pairs should be specified as strings.

7.8.1 System keywords

The System object contains the basis set and geometry information, which can be obtained in a few different ways.
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Key-
word

Re-
quired

Valid
values

Description

moleculeyes molden,qchem_fchk
rassi_h5,inline

Specifies which format to read the molecular geometry. If “inline” is chosen, the “geom-
etry” keyword is also required.

ge-
om-
etry

no See be-
low

Specifies the geometry in an inline format described below. Required when the
“molecule” field is set to “inline”.

ba-
sis_file

yes path to
basis
file

Specifies the path to the basis file. When “molecule” is set to “molden”,”rassi_h5”, or
“qchem_fchk”, this field should be set to a path to a file of the specified type. When
“molecule” is set to “inline”, this field should be set to a path to a basis set file formatted
in “Psi4” style.

cart_bfno ‘d’,
‘df’,
‘dfg’
‘dg’,
‘f’, ‘g’,
‘fg’

Controls the use of pure or Cartesian angular forms of GTOs. The letters corresponding
to the angular momenta listed in this field will be expanded in cartesians, those not listed
will be expanded in pure GTOs. For example, “df” means d and f-type functions will
be cartesian, and all others will be pure harmonic. This keyword is only active when
“molecule” is set to “inline”.

bohr_coordinatesno “True”
or
“False”

Set this keyword to true when the coordinates specified in “geometry” keyword are in
bohr units. This keyword is only active when “molecule” is set to “inline”.

When specifying the geometry inline, use the following format:

atom1 x-coordinate y-coordinate z-coordinate

atom2 x-coordinate y-coordinate z-coordinate ...

Ghost centers with zero nuclear charge can be specified using the symbol “X”.

Units are assumed to be Angstroms unless the bohr_coordinates keyword is set to True.

Example:

sys_dict = {"geometry": '''N 0 0 1.039
N 0 0 -1.039
X 0 0 0.0''',

"molecule" : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

7.8.2 CAP keywords

PyOpenCAP supports Voronoi and Box-type absorbing potentials. We also allow some customization of the numerical
grid used for integration. Please see https://github.com/dftlibs/numgrid for more details on the radial_precision and
angular_points keywords.

General Keywords
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Key-
word

Re-
quired

Default/valid values Description

cap_type yes “box” or “voronoi” Type of absorbing potential.
ra-
dial_precision

no “14” Radial precision for numerical integration grid. A precision of 1x10^(-
N), where N is the value specified is used.

angu-
lar_points

no “590” Number of angular points used for the grid. See https://github.com/
dftlibs/numgrid for allowed numbers of points.

do_numericalno True for box CAPs,
false for other CAPs

Analytical [Santra1999] integrals are available for Box CAPs only, and
are used by default. All other CAPs must be integrated numerically.

Box CAP

A quadratic potential which encloses the system in a 3D rectangular box. Analytical integrals are available for these
types of CAPs.

𝑊 = 𝑊𝑥 + 𝑊𝑦 + 𝑊𝑧

𝑊𝛼 =

{︂
0 |𝑟𝛼| < 𝑅0

𝛼(︀
𝑟𝛼 −𝑅0

𝛼

)︀2 |𝑟𝛼| > 𝑅0
𝛼

}︂

Keyword Description
cap_x Onset of CAP in x-direction. Specify in bohr units.
cap_y Onset of CAP in y-direction. Specify in bohr units.
cap_y Onset of CAP in z-direction. Specify in bohr units.

Smooth Voronoi CAP

A quadratic potential which uniformly wraps around the system at a specified cutoff radius. The edges be-
tween between Voronoi cells are smoothed out to make the potential more amenable to numerical integration
[Sommerfeld2015].

𝑊 (�⃗�) =

{︂
0 𝑟𝑊𝐴 ≤ 𝑟𝑐𝑢𝑡

(𝑟𝑊𝐴 − 𝑟𝑐𝑢𝑡)
2 𝑟𝑊𝐴 > 𝑟𝑐𝑢𝑡

}︂

𝑟𝑊𝐴(�⃗�) =

√︃∑︀
𝑖 𝑤𝑖|�⃗� − �⃗�𝑖|2∑︀

𝑖 𝑤𝑖

𝑤𝑖 =
1

(|�⃗� − �⃗�𝑖|2 − 𝑟2𝑚𝑖𝑛 + 1𝑎.𝑢.)2

𝑟𝑚𝑖𝑛 = min
𝑖

|�⃗� − �⃗�𝑖|

Keyword Description
r_cut Cutoff radius for Voronoi CAP. Specify in bohr units.

Example

cap_dict = {"cap_type": "box",
"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}
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Electronic structure keywords

The read_data() function is able to parse the zeroth order Hamiltonian and load the densities when supplied
with an appropriate formatted dictionary. All keywords must be specified to use this function. Currently, this is only
supported for calculations using the OpenMolcas and Q-Chem interfaces.

Keyword Description
method Electronic structure method used in the calculation. Valid options are “MS-CASPT2”, “EOM”, and

“TDDFT”.
mol-
cas_output

Path to OpenMolcas output file.

h0_file Path to Zeroth order Hamiltonian file. Can be full matrix or diagonal. See https://github.com/gayverjr/
opencap/tree/main/examples/opencap

package “OpenMolcas” or “QChem”
rassi_h5 Path to OpenMolcas rassi.h5 file.
qchem_outputPath to Q-Chem output file.
qchem_fchk Path to Q-Chem .fchk file.

Example:

es_dict = { "package": "openmolcas",
"method" : "ms-caspt2",

"molcas_output":"path/to/output.out",
"rassi_h5":"path/to/rassi.h5"}

pc.read_data(es_dict)

7.8.3 References
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