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PyOpenCAP is the Python API for OpenCAP, an open-source software aimed at extending the functionality of quantum
chemistry packages to describe resonances. PyOpenCAP uses the pybind1 1 library to expose C++ classes and methods,
allowing calculations to be driven within a Python interpreter.

PyOpenCAP is currently capable of processing quantum chemistry data in order to perform ‘projected’ complex ab-
sorbing potential calculations on metastable electronic states. These calculations are able to extract resonance position
and width at the cost of a single bound-state electronic structure calculation.

To get started, please see our Getting Started page.
If you have questions or need support, please open an issue on GitHub, or contact us directly at gayverjr@bu.edu.

PyOpenCAP is released under the MIT license.
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* OpenMolcas
* PySCF
* Q-Chem

e Psi4

¢ Columbus

SUPPORTED PACKAGES



https://molcas.gitlab.io/OpenMolcas/sphinx/
http://pyscf.org/
https://www.q-chem.com/
http://www.psicode.org/
https://www.univie.ac.at/columbus/
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CHAPTER
TWO

EOM-CC

FCI

MS-CASPT?2 (and extended variants)
TDDFT

ADC (through ADCC)

MR-CI family of methods

SUPPORTED METHODS



https://adc-connect.org/
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SUPPORTED POTENTIALS

* Box (analytical integrals are now available!)
* Smooth Voronoi
* Custom CAP functions

Please see the keywords section for more details.
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OTHER FEATURES

* Python based eigenvalue trajectory analysis tools

* Custom numerical integration grids
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IN DEVELOPMENT

» Feshbach projection approaches

¢ Tools for dyanmics on complex potential energy surfaces
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7.1 Installation

7.1.1 Install with pip (recommended)

pip install pyopencap
# or
pip3 install pyopencap

Precompiled Python wheels are available on Pypi for almost all Linux systems and most MacOS systems, for Python
versions 3.6 and later.

7.1.2 Build from source

Dependencies
Compiling PyOpenCAP from source requires first installing the following dependencies:
e C++ compiler with full C++17 language support and standard libraries
* Python3 interpreter and development libraries: version >= 3.6
e CMake: version >=3.12
e HDFS5: hierarchical data format, version >= 1.10
* Eigen: linear algebra library, version >= 3.3

All of these dependencies are available through standard package managers such as Homebrew, Conda, and yum/apt-get
on Linux.

Compiler

For Mac/Linux users, any compiler which fully supports the C++17 standard should work (e.g GCC 7.x or later). If
you are unsure, try updating to the latest version of your compiler.
Building the package

If your operating system/Python environment is not covered by any of our pre-built wheels, the command pip install
pyopencap will download the tarball from Pypi and try to compile from source. You can also clone the repository and
install a local version:
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git clone https://github.com/gayverjr/opencap.git
cd opencap

pip install .

Compiling from source will take several minutes. To monitor your progress, you can run pip with the —verbose flag.

To ensure that the installation was successful, return to your home directory, start a Python shell, and type:

import pyopencap

If you cloned the repository, you can run the tests by entering the pyopencap directory, and running pytest.

7.2 Getting Started

Constructing the System object

The System object of PyOpenCAP contains the geometry and basis set information, as well as the overlap matrix. The
constructor takes in a Python dictionary as an argument, and understands a specific set of keywords . There are four
equivalent ways of specifying the geometry and basis set: qchem_fchk, rassi_h5, molden, and inline. Here, we’ll use
the rassi_hS file.

sys_dict = {"molecule": "rassi_h5","basis_file": "path/to/rassi/file.h5"}
s = pyopencap.System(sys_dict)
smat = s.get_overlap_mat()

Constructing the CAP object

The CAP matrix is computed by the CAP object. The constructor requires a System object, a dictionary containing the
CAP parameters, and the number of states.

nstates = 10
cap_dict = {"cap_type": "box",

"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

pc = pyopencap.CAP(s,cap_dict,nstates)

Parsing electronic structure data from file

The read_data() function can read in the effective Hamiltonian and densities in one-shot when passed a Python
dictionary with the right keywords.

es_dict = {"method" : "ms-caspt2",
"package": "openmolcas",
"molcas_output":"path/to/output/file.out",
"rassi_h5": "path/to/rassi/file.h5"}

pc.read_data(es_dict)
h® = pc.get_HQO

Passing densities in RAM
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Alternatively, one can load in the densities one at a time using the add_tdms () or add_tdm() functions. The den-
sity matrices should be in atomic orbital basis, with the same atomic orbital ordering as the System (which can be
verify using check_overlap_matrix). The example below shows how one might pass the densities from a PySCF
calculation:

s.check_overlap_mat(pyscf_smat, "pyscf")
pc = pyopencap.CAP(s,cap_dict,10)
for i in range(0,10):
for j in range(i,10):
dml = fs.trans_rdml(fs.ci[i],fs.ci[j],myhf.mo_coeff.shape[1],mol.nelec)
dml_ao = np.einsum('pi,ij,qj->pq', myhf.mo_coeff, dml, myhf.mo_coeff.conj())
pc.add_tdm(dml_ao,i,j, " "pyscf")
if il=j:
pc.add_tdm(dml_ao,j,i,"pyscf™)

Once all of the densities are loaded, the CAP matrix is computed using the compute_projected_cap() function.
The matrix can be retrieved using the get_projected_cap () function.

>>> pc.compute_projected_cap()
>>> W_mat=pc.get_projected_cap()

‘We now have our zeroth order Hamiltonian (stored in h0) and our CAP matrix(W_mat) in the state basis. Extracting
resonance position and width requires analysis of the eigenvalue trajectories.

Analysis
PyOpenCAP provides user friendly tools for analysis of eigenvalue trajectories.

The CAPHamiltonian contains functions aimed at diagonalization of the CAP Hamiltonian over a range of eta values.
Assuming one has already obtained HO and W in the state basis as numpy matrices, it can be constructed as such:

from pyopencap.analysis.CAPTrajectory import CAPHamiltonian
eta_list = np.linspace(0,5000,101)

eta_list = np.around(eta_list * 1E-5,decimals=5)

CAPH = CAPHamiltonian(HO=hO,W-mat)

# equivalently

CAPH = CAPHamiltonian(pc=pc)
CAPH.run_trajectory(eta_list,cap_lambda=0.0)

One can easily plot the eigenvalue spectrum in au or eV (relative to a given reference energy) as follows:

# total energies

plt.plot(np.real (CAPH.total_energies) ,np.imag(CAPH.total_energies), 'ro')

plt.show()

# excitation energies

plt.plot(np.real (CAPH.energies_ev(ref_energy)),np.imag(CAPH.energies_ev(ref_energy)), 'ro
="

plt.show()

To analyze a given trajectory, use track_state()

traj = CAPH.track_state(l,tracking="overlap™)

traj is now a EigenvalueTrajectory object, which contains helpful functions for analysis. One can plot raw and
corrected trajectories:

7.2. Getting Started 17
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plt.plot(np.real(traj.energies_ev(ref_energy)),np.imag(traj.energies_ev(ref_energy)), ' '-ro
="

plt.plot(np.real(traj.energies_ev(ref_energy,corrected=True)),np.imag(traj.energies_
—ev(ref_energy,corrected=True)), '-bo"')

There are also functions to help find the optimal value of the CAP strength parameter (and therefore, best estimate of
resonance position and width) for uncorrected/corrected trajectories:

uc_energy,uc_eta_opt = traj.find_eta_opt()
corr_energy,corr_eta_opt = traj.find_eta_opt(corrected=True)

For more information, please see the documentation for the CAPHamiltonian and EigenvalueTrajectory classes.
See more

Please see the notebooks in our repository for detailed examples which demonstrate the full functionality of PyOpen-
CAP.

7.3 Theory

7.3.1 Resonances and Non-Hermitian Quantum Mechanics

Electronic resonances are metastable electronic states with finite lifetimes embedded in the ionization/detachment
continuum. Common examples include temporary anions formed by electron attachment, and core-excited and core-
ionized states which can undergo Auger decay or similar relaxation pathways. These states are not part of the usual L?
Hilbert space of square integrable functions, and instead belong to the continuous spectrum of the electronic Hamil-
tonian. Theoretical description of resonances is generally not possible by means of conventional bound-state quantum
chemistry methods, and special techniques are required to obtain accurate energies and lifetimes.

Non-Hermitian quantum mechanics (NHQM) techniques provide an attractive approach that enables adaptation of
existing quantum chemistry methodologies to treat metastable electronic states. In NHQM formalisms, a resonance
appears as a single square-integrable eigenstate of a non-Hermitian Hamiltonian, associated with a with a complex
eigenvalue:

E = Eyes —iT/2.

The real part of the energy (E,.s) is the resonance position. The imaginary part (I'/2) is the half-width, which is
inversely proportional to the lifetime of the state [Reinhardt1982].

7.3.2 Complex Absorbing Potential

Complex absorbing potentials (CAPs) are imaginary potentials added to the Hamiltonian, and they are routinely used
for evaluation of resonance parameters. In this context, CAPs transform a resonance into a single square integrable
state, rendering it accessible by means of standard bound-state techniques. To this end, the electronic Hamiltonian is
augmented with an imaginary potential:

HCAP — [ —inW
where 7 is the CAP strength parameter, and W is a real potential which vanishes in the vicinity of the molecular system

and grows with distance.

Since the CAP-augmented Hamiltonian depends on the strength of the CAP, a choice has to be made on the optimal
value of 7 that provides best estimates of the resonance position and width. In a complete one-electron basis, the exact
resonance position and width are obtained in the limit of an infinitesimally weak CAP (1 — 07). In practice when finite
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basis sets are used, an optimal CAP strength 7),,, is found by locating a stationary point on the eigenvalue trajectory
E(n). A commonly used criterion is the minimum of the logarithmic velocity (|n%| — min) [Riss1993].

7.3.3 Projected CAP

There are multiple strategies for how to incorporate CAPs into an electronic structure calculation. The most straightfor-
ward implementation is to engage the one-electron CAP term starting at the lowest level of theory (e.g. Hartree-Fock).
While conceptually simple, this requires modification of electronic structure routines to handle the complex objects.
Additionally, this approach requires a unique calculation for each 1 along the eigenvalue trajectory, which can become
prohibitively expensive for larger systems or dynamical simulation.

An efficient alternative is to treat the CAP as a first order perturbation, considering only a small subset of the eigenstates
of the real Hamiltonian [Sommerfeld2001]. In this so called subspace projection scheme, the CAP will be introduced
in the correlated basis of the reduced subset of states:

WEEB = (u|Wlv)

uv

where u and v are eigenstates of the real Hamiltonian. Since the CAP is a one-particle operator, these expressions can
easily be evaluated using the CAP matrix in atomic orbital basis evaluated separately, the one-electron reduced density
matrices (p) for each state, and the set of transition density matrices () between each pair of states that are obtained
from the bound-state calculation.

cB _ Tr [WAO’YUU] . u 7& v
Wao” = { Tr WA ], u=v

Once CAP matrix is evaluated the CAP-augmented Hamiltonian is constructed as follows:
HEAP — Hy — i?]WCB

where H is an appropriate zeroth order Hamiltonian obtained from the electronic structure calculation, and WP is
the CAP represented in the correlated basis. Diagonalization of this CAP-augmented Hamiltonian yields n-dependent
eigenvalues that are used to extract resonance position and width. Importantly, as only a small number of states in
considered (typically less than 30), finding the eigenvalues of the CAP-augmented Hamiltonian has negligible cost
in comparison to the bound-state electronic structure calculation required to get the initial set of states (u,v,..). Thus,
although this perturbative or projected approach introduces another parameter (number of eigenstates), the overall cost
is essentially reduced to that of a single electronic structure calculation.

With the zeroth order Hamiltonian and the CAP matrix, eigenvalue trajectories can be generated by means of simple
external scripts, and estimates of resonances positions and widths can be obtained from analysis of the trajectories.

7.3.4 Continuum Remover CAP

One of the major challenges of analyzing eigenvalue trajectories is the appearance of of unphysical stationary points.
To separate the physical complex energy stabilized points from the non physical ones, Moiseyev and coworkers
[Moiseyev2009] have proposed adding an additional artificial real valued potential to the CAP Hamiltonian.

HCAP = Hy + (A —in)WCB

This approach is known as continuum remover-CAP or CR-CAP. The idea behind this CR-CAP is that the true reso-
nance wave function is insensitive to such a potential due to its bound-like nature, while artificial stabilization points
corresponding to the scattering states would be significantly affected by the additional real valued potential. A can be
positive or negative, and there is usually no need to optimize A, as it is only used for the purpose of identifying the true
resonance stabilization point.

7.3. Theory 19
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7.3.5 References
7.4 Interfaces

PyOpenCAP officially supports interfaces with the OpenMolcas, Q-Chem, Psi4, Columbus, and PySCF software pack-
ages.

7.4.1 OpenMolcas

OpenMolcas is an open-source quantum chemistry package which specializes in multiconfigurational approaches to
electronic structure. OpenMolcas can be used in tandem with PyOpenCAP to perform complex absorbing potential
(extended)multi-state complete active space second order perturbation theory [CAP/MS-CASPT2] calculations, which
have been shown to yield accurate energies and lifetimes for metastable electronic states. Here, we outline the steps
of performing these calculations using OpenMolcas and PyOpenCAP. Some suggested readings are provided at the
bottom of the page.

Step 1: Running OpenMolcas calculation

To generate the one-particle densities required to construct the CAP matrix, the RASSI module must be executed with
the TRD1 keyword activated. When using XMS-CASPT2, RMS-CASPT2, or other variants which utilize rotated
CASSCEF wave functions, the CAP matrix will eventually be rotated into the new basis using the rotation matrix in the
output (UNdagger*W*U). RASSI will save transition density matrices between each pair of CASSCEF states as well as
the one-particle density matrices for each state to a file titled $Jobname.rassi.h5.

Export transition densities with RASSI

&RASST
TRD1

Generate effective Hamiltonian with MS-CASPT2

The MS-CASPT?2 approach is required to generate an appropriate zeroth Hamiltonian for the projected CAP method.
To activate MS-CASPT?2 in OpenMolcas, use the Multistate keyword in the CASPT2 module.

&CASPT2
Multistate = all

See the OpenMolcas manual for other variants of MS-CASPT2 which can be activated in the &CASPT2 section.

Step 2: Importing the data to PyOpenCAP

System object

To run a PyOpenCAP calculation, the geometry and basis set must be imported into a System object. The constructor
takes in a Python dictionary as an argument. The relevant keywords are discussed here, and more information is
provided in the keywords page.

Rassi.h5

The rassi.h5 file which contains the one-particle densities also contains the geometry and basis set information. To
read in from rassi, “molcas_rassi” must set as the value to the key “molecule”, and the path to the file must be set as
the value to the key “basis_file”. Here is an example:

20 Chapter 7. Contents
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sys_dict = {"molecule": "molcas_rassi","basis_file": "path/to/rassi.h5"}
my_system = pyopencap.System(sys_dict)

Molden

Molden files generated by OpenMolcas contain the geometry and basis set information. To read in from molden,
“molden” must be set as the value to the key “molecule”, and the path to the file must be set as the value to the key
“basis_file”. Here is an example:

sys_dict = {"molecule": "molden","basis_file": "path/to/file.molden"}
my_system = pyopencap.System(sys_dict)

Inline(not recommended)

The molecule and basis set can also be specified manually. The “molecule” keyword must be set to “read”, and then
an additional keyword “geometry:” must be specified, with a string that contains the geometry in xyz format. The
“basis_file” keyword must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from the
MolSSI BSE. Other optional keyword for this section include “bohr_coordinates” and cart_bf. Please see the keywords
section for more details. Up to G-type functions are supported.

sys_dict = {"geometry": ""'N 0 O 1.039
N 0 O -1.039
X 0 0 60.0"'",

"molecule"” : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

my_system = pyopencap.System(sys_dict)

One particle densities/zeroth order Hamiltonian

The CAP matrix is computed by the CAP object. The constructor requires a System, a dictionary containing the CAP
parameters, the number of states, and finally the string “openmolcas”, which denotes the ordering of the atomic orbital
basis set. An example is provided below. Please see the keywords section for more information on the CAP parameters.

cap_dict = {"cap_type": "box",

"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

nstates = 10
pc = pyopencap.CAP(my_system,cap_dict,nstates)

Before we can compute the CAP matrix in the state basis, we must load in the density matrices. The best way
is to use the read_data() function. As shown below, we define a dictionary which contains the following keys:
“package”’(openmolcas), “method” (electronic structure method chosen), “rassi_h5”(density matrices), and “mol-
cas_output”(output file containing effective Hamiltonian). The effective Hamiltonian can be retrieved using the
get_H() function of the CAP object. Currently, only effective Hamiltonians from MS-CASPT?2 calculations can be
parsed from an OpenMolcas output file.

es_dict = { "package": "openmolcas",
"method" : "ms-caspt2",

"molcas_output":"path/to/output.out”,
"rassi_h5":"path/to/rassi.h5"}

(continues on next page)

7.4. Interfaces 21
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(continued from previous page)

pc.read_data(es_dict)
# save the effective Hamiltonian for later use
h® = pc.get_HQ

Step 3: Computing the CAP matrix

Once all of the densities are loaded, the CAP matrix is computed using compute_projected_cap (). The matrix can
be retrieved using get_projected_cap().

pc.compute_projected_cap()
W_mat=pc.get_projected_cap()

Note:

When using cartesian d, f, or g-type basis functions, special care must be taken to ensure that the normalization
conventions match what is used by OpenMolcas. In these cases, compute_ao_cap() and then renormalize() or
renormalize_cap () should be invoked before calling compute_projected_cap().

pc.compute_ao_cap(cap_dict)
pc.renormalize()
pc.compute_projected_cap()

Step 4: Generate and analyze eigenvalue trajectories

HO and W, or the CAP object can be used to construct a CAPHamiltonian object.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(HO=HO,W=W_mat)

# equivalently

CAPH = CAPHamiltonian(pc=pc)

See the analysis section for more details.

Officially supported methods

The following methods have been benchmarked, and the read_data() function is capable of parsing output files to
obtain the zeroth order Hamiltonian.

e MS-CASPT2, and other variants (e.g. XMS-CASPT2) which utilize unitary rotations of the original CASSCF
states. The CAP matrix will be rotated into the new basis using the rotation matrix.
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Untested (use at your own risk!)

The following methods are capable of dumping densities using the TRD1 keyword of the RASSI module, but have not
been benchmarked for any systems, and the zeroth order Hamiltonian cannot be parsed from the output file using the
read_data() function. Use at your own caution, and please contact us if you find success using any of these methods
so we can add official support!

* (QD)DMRG-(PC/SC)NEVPT2
* SS-CASPT2
* MC-PDFT

Suggested reading

7.4.2 PySCF

PySCF is an ab initio computational chemistry program natively implemented in Python. The major advantage of using
Pyscf in tandem with OpenCAP is that calculations can be performed in one-shot within the same python script. Since
PySCEF allows direct control over data structures such as density matrices, the interface between PySCF and OpenCAP
is seamless.

Step 1: Defining the System object

Molden(recommended)

The best way to construct the System object is to import the geometry and basis set from a molden file generated by a
PySCEF. This ensures proper ordering of the AO basis set.

molden_dict = {"basis_file":"molden_in.molden","molecule": "molden"}
pyscf.tools.molden. from_scf(myhf, "molden_in.molden")
s = pyopencap.System(molden_dict)

Inline

The molecule and basis set can also be specified inline. The “molecule” keyword must be set to “read”, and then
an additional keyword “geometry” must be specified, with a string that contains the geometry in xyz format. The
“basis_file” keyword must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from
the MolSSI BSE. Other optional keyword for this section include “bohr_coordinates” and “cart_bf”. Please see the
keywords section for more details. It is recommended to check the overlap matrix to ensure that the ordering and
normalization matches. Up to G-type functions are supported.

pyscf_smat = scf.hf.get_ovlp(mol)

sys_dict = {"geometry": ""'N 0 O 1.039
N 06 0 -1.039
X 0 0 0.0''",

"molecule" : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

s.check_overlap_mat(pyscf_smat, "pyscf")

7.4. Interfaces 23
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Step 1: Defining the CAP object

The CAP matrix is computed by the CAP object. The constructor requires a System object, a dictionary containing the
CAP parameters, and the number of states. An example is provided below. Please see the keywords section for more
information on the CAP parameters.

nstates = 10
cap_dict = {"cap_type": "box",

"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

pc = pyopencap.CAP(my_system,cap_dict,nstates)

Step 2: Passing the density matrices

The simplest interface is with the FCI modules. Transition densities can be obtained using the trans_rdm1 () function:

fs = fci.FCI(mol, myhf.mo_coeff)

e, ¢ = fs.kernel()

# tdm between ground and 1st excited states

dml = fs.trans_rdml(fs.ci[0],fs.ci[1],myhf.mo_coeff.shape[1l],mol.nelec)

Importantly, trans_rdm1 returns the density matrix in MO basis. Thus before passing it to PyOpenCAP, it must be
transformed into AO basis:

dml_ao = np.einsum('pi,ij,qj->pq', myhf.mo_coeff, dml, myhf.mo_coeff.conj())

Densities are loaded in one at a time using add_tdm (). Ensure that the indices of each state match those of the zeroth
order Hamiltonian.

for i in range(0®,len(fs.ci)):
for j in range(®,len(fs.ci)):
dml = fs.trans_rdml(fs.ci[i],fs.ci[j],myhf.mo_coeff.shape[1],mol.nelec)
dml_ao = np.einsum('pi,ij,qj->pq', myhf.mo_coeff, dml, myhf.mo_coeff.conj())
pc.add_tdm(dml_ao,i,j, " "pyscf")

Note:

The interface with PySCF is not restricted to the FCI module. The add_tdm() function is completely general; it
requires only that the densities are in AO basis, and that the basis set ordering matches the system. Examples for ADC,
EOM-EA-CCSD, and TDA-TDDFT are provided in the repository.
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Step 3: Computing the CAP matrix

Once all of the densities are loaded, the CAP matrix is computed using the compute_projected_cap() function.
The matrix can be retrieved using the get_projected_cap () function.

pc.compute_projected_cap()
W_mat=pc.get_projected_cap()

Note:

When using cartesian d, f, or g-type basis functions, special care must be taken to ensure that the normalization
conventions match what is used by OpenMolcas. In these cases, compute_ao_cap() and then renormalize() or
renormalize_cap() should be invoked before calling compute_projected_cap().

pc.compute_ao_cap(cap_dict)
pc.renormalize_cap(pyscf_smat, "pyscf")
pc.compute_projected_cap()

Step 4: Generate and analyze eigenvalue trajectories

HO and W can be used to construct a CAPHamiltonian object. In many cases, it can be advantageous to use the
export () function, which generates an OpenCAP formatted output file, which can be used for later analysis.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(HO®=HO,W=W_mat)
CAPH. export("output.out")

See the analysis section for more details.

Officially supported methods

e Full CI
* ADC (through ADCC)
¢ TDA-TDDFT

Untested (use at your own risk!)

Any module which one particle transition densities available can be supported. This includes all methods which can
utilize the trans_rdm1 function, including but not limited to:

* MRPT

7.4. Interfaces 25
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7.4.3 QChem

PyOpenCAP supports an interface with the Q-Chem quantum chemistry package.

Importing data

System object

The geometry and basis set can be imported into a System object using .fchk files.

import pyopencap
sys_dict = {"molecule": "qchem_fchk","basis_file": "path/to/qc.fchk"}
my_system = pyopencap.System(sys_dict)

CAP object Densities can be read in from .fchk files, and the zeroth order Hamiltonian can be read from Q-Chem
output files for EOM-CC calculations. To export the full densities to .fchk, GUI=2 must be set in the $rem card, and
PROJ_CAP=3 must be set in the $complex_ccman card. See the Q-Chem manual for more details.

The following snippet can be used to read the data from a Q-Chem output and properly formatted .fchk file, and calculate
the CAP matrix:

cap_dict = {"cap_type": "box",

"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

nstates = 10
pc = pyopencap.CAP(my_system,cap_dict,nstates)
# read in densities

es_dict = {"method" : "eom",

"package": "qgchem",
"gchem_output":"path/to/output.out”,
"qchem_fchk":"path/to/qc.fchk"}

pc.read_data(es_dict)

# save the zeroth order Hamiltonian for later use
h® = pc.get_HQO

pc.compute_projected_cap()
W_mat=pc.get_projected_cap()

Generate and analyze eigenvalue trajectories

HO and W, or the CAP object can be used to construct a CAPHamiltonian object.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(HO®=HO,W=W_mat)

# equivalently

CAPH = CAPHamiltonian(pc=pc)

Additionally, Q-Chem (starting from version 5.4) natively implements Projected CAP-EOM-CC and Projected CAP-
ADC methods, and prints the necessary matrices to the output. PyOpenCAP can parse these output files to generate
CAPHamiltonian objects.
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from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(output="proj-eomcc.out",irrep="B2g")
CAPH = CAPHamiltonian(output="proj-adc.out",onset="3000")

See the analysis section for more details.

7.4.4 PSI4

PSI4 is a C++/Python core that easily interfaces with and is extended by standalone community projects. The major
advantage of using PSI4 in tandem with PyOpenCAP is that calculations can be performed in one-shot within the same
python script. Since PSI4 allows direct control over data structures such as density matrices, the interface between
PSI4 and PyOpenCAP is seamless. Our interface has been tested for the Psi4 dev build, which is available via conda:

conda install -c psi4/label/dev psi4

Step 1: Defining the System object

Molden(recommended)

The best way to construct the System object is to import the geometry and basis set from a molden file generated by a
PSI4. This ensures proper ordering of the AO basis set.

psi4.molden(wfn, 'molden_in.molden')
molden_dict = {"basis_file":"molden_in.molden","molecule": "molden"}
s = pyopencap.System(molden_dict)

Inline

The molecule and basis set can also be specified inline. The “molecule” keyword must be set to “read”, and then
an additional keyword “geometry” must be specified, with a string that contains the geometry in xyz format. The
“basis_file” keyword must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from
the MolSSI BSE. Other optional keyword for this section include “bohr_coordinates” and “cart_bf”. Please see the
keywords section for more details. It is recommended to check the overlap matrix to ensure that the ordering and
normalization matches. Up to G-type functions are supported.

E, win = psi4.energy('scf', return_wfn=True)
mints = psi4.core.MintsHelper (wfn.basisset())
S_mat = np.asarray(mints.ao_overlap())
sys_dict = {"geometry": ""'N 0 O 1.039
N 0 0 -1.039
X 0 0 0.0"'",

"molecule" : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

s.check_overlap_mat(S_mat, "psid™)
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Step 1: Defining the CAP object

The CAP matrix is computed by the CAP object. The constructor requires a System object, a dictionary containing the
CAP parameters, and the number of states. An example is provided below. Please see the keywords section for more
information on the CAP parameters.

cap_dict = {"cap_type": "box",

"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

nstates = 10
pc = pyopencap.CAP(my_system,cap_dict,nstates)

Step 2: Passing the density matrices

The simplest interface is with the full CI module. One can request one particle densities to be calculated by using the
opdm and tdm options:

psi4.set_options({"opdm":True, 'num_roots":nstates, "tdm":True,"dipmom":True})
ci_energy, ci_wfn = psi4.energy('FCI', return_wfn=True)

Densities are now available through the ger_opdm function. One must be careful to ensure that the densities are repre-
sented in AO basis before passing to PyOpenCAP using the add_tdm() function:

for i in range(0®,nstates):
for j in range(i,nstates):
opdm_mo = ci_wfn.get_opdm(i, j, "SUM", True)
opdm_so = psi4.core.triplet(ci_wfn.Ca(), opdm_mo, ci_wfn.Ca(), False, False,.
—True)
opdm_ao = psi4.core.Matrix(n_bas,n_bas)
opdm_ao.remove_symmetry(opdm_so,so2ao)
pc.add_tdm(opdm_ao.to_array(),i,j, "psid")
if not i==j:
pc.add_tdm(opdm_ao.to_array().conj(.T,j,i,"psid")

Please see the PSI4 documentation for more details, or our repository for an example.
Note:

The interface with Psi4 is not restricted to FCI. The add_tdm() function is completely general; it requires only that
the densities are in AO basis, and that the basis set ordering matches the system. An example for ADC is provided in
the repository.
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Step 3: Computing the CAP matrix

Once all of the densities are loaded, the CAP matrix is computed using the compute_projected_cap() function.
The matrix can be retrieved using the get_projected_cap () function.

pc.compute_projected_cap()
W_mat=pc.get_projected_cap()

Step 4: Generate and analyze eigenvalue trajectories

HO and W can be used to construct a CAPHamiltonian object. In many cases, it can be advantageous to use the
export () function, which generates an OpenCAP formatted output file, which can be used for later analysis.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(HO=HO,W=W_mat)
CAPH. export ("output.out™)

See the analysis section for more details.

Officially supported methods

e Full CI
* ADC (through ADCC)

7.4.5 Columbus

COLUMBUS is a collection of programs designed primarily for multi-reference (MR) calculations on electronic ground
and excited states of atoms and molecules. Here, we outline the steps of performing CAP-MRCI calculations with
Columbus and OpenCAP, though the steps are broadly applicable to any of the methods. These steps have only been
tested for the serial version of Columbus.

Step 1: Running MRCI calculation

When running the MRCI calculation, ensure that transition moments between each pair of relevant states are requested.
Once the MRCI calculation is finished, navigate to the WORK directory. Assuming one has set up the input properly,
the following files will be needed

e cidltrfl: files for each pair of states, including state density matrices (i.e. cid1trfl. FROMdrtl1.state TOdrtl1 .statel)
* ciudgsm: file which contains final MRCI energies and convergence information

* tranls: file which contains information on active space/frozen orbitals, which is necessary to fully reconstruct
density matrices in AO basis

Also, the MO coefficients will be needed, which are located in the MOLDEN directory:

* molden_mo_mec.sp: optimized MO coefficients from MCSCEF calculation in .molden format
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Step 2: Generating human readable density matrix files

The next step is to convert the cidltrfl files into a human readable format. The Columbus utility iwfint.x can be used for
this purpose. We provide a bash script in the main repository utilities/write_iwfmt.bash which can be executed
in the WORK directory to generate these files, assuming that the SCOLUMBUS environment variable is properly set.

Step 2: Importing the data to PyOpenCAP

System object

To run a PyOpenCAP calculation, the geometry and basis set must be imported into a System object. The constructor
takes in a Python dictionary as an argument.

Molden (recommended)

Molden files generated by Columbus contain the geometry and basis set information. To read in from molden, “molden”
must be set as the value to the key “molecule”, and the path to the file must be set as the value to the key “basis_file”.
Here is an example:

sys_dict = {"molecule": "molden","basis_file": "path/to/file.molden"}
my_system = pyopencap.System(sys_dict)

Inline(not recommended)

The molecule and basis set can also be specified manually. The “molecule” keyword must be set to “read”, and then
an additional keyword “geometry:” must be specified, with a string that contains the geometry in xyz format. The
“basis_file” keyword must be set to a path to a basis set file formatted in Psi4 style, which can be downloaded from the
MolSSI BSE. Other optional keyword for this section include “bohr_coordinates” and cart_bf. Please see the keywords
section for more details. Up to G-type functions are supported.

sys_dict = {"geometry": ""'N 0 O 1.039
N 0 0 -1.039
X 0 0 0.0''",

"molecule" : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

my_system = pyopencap.System(sys_dict)

One particle densities/zeroth order Hamiltonian

The CAP matrix is computed by the CAP object. The constructor requires a System, a dictionary containing the CAP
parameters, the number of states, and finally the string “openmolcas”, which denotes the ordering of the atomic orbital
basis set. An example is provided below. Please see the keywords section for more information on the CAP parameters.

cap_dict = {"cap_type": "box",
"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88"}
nstates = 10
pc = pyopencap.CAP(my_system,cap_dict,nstates)

Before we can compute the CAP matrix in the state basis, we must load in the density matrices. Due to the large number
of files generated by Columbus, we have provided a colparser utility to manage the data.

A colparser object is instantiated using the tranls file and the MO coefficients:
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parser = colparser('data_files/molden_mo_mc.sp', 'data_files/tranls')

The zeroth order Hamiltonian, which is diagonal for MR-CI, can be read in from the ciudgsm file as follows:

HO = parser.get_HO(filename='data_files/ciudgsm')

Densities are loaded in one at a time using pyopencap.analysis.colparser.sdm_ao() / pyopencap.analysis.
colparser. tdm_ao() and add_tdm(). To specify which tdm/sdm to parse, one can use state and optionally DRT
indices:

for i in range(0®,nstates):
for j in range(i,nstates):
if i==j:
# Indices start from 0 in pyopencap, but from 1 in Columbus file.

-,names

dml_ao = parser.sdm_ao(i+1,data_dir="data_files',DRTn=1)

pc.add_tdm(dml_ao,i,j, 'molden")

else:

# Indices start from 0 in pyopencap, but from 1 in Columbus file,
—,names

dml_ao = parser.tdm_ao(i+l, j+1,drtFrom=1,drtTo=1,data_dir="data_
—files")

pc.add_tdm(dml_ao,i,j, 'molden")
pc.add_tdm(dml_ao.conj().T,j,i, 'molden')
pc.compute_projected_cap()
W=pc.get_projected_cap()

In this example, the files are assumed to located in ./data_files with names cidltrfl.FROMdrt{drtFrom}.
state{i}TOdrt{drtTo}.state{i}.iwfmt, which is consistent with them having been generated by the
utilities/write_iwfmt.bash script.

Alternatively, one can absolute paths:

dml_ao = parser.sdm_ao(l,filename="data_files/cidltrfl.FROMdrtl.statelTOdrtl.statel.iwfmt
")
pc.add_tdm(dml_ao,0,0, 'molden"')

Step 4: Generate and analyze eigenvalue trajectories

HO and W, or the CAP object can be used to construct a CAPHamiltonian object.

from pyopencap.analysis import CAPHamiltonian
CAPH = CAPHamiltonian(HO=HO,W=W_mat)

# equivalently

CAPH = CAPHamiltonian(pc=pc)

See the analysis section for more details.
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Officially supported methods

MR-CISD has been officially tested, though the interface should work with other methods. Please contact us if you find
success or have issues using any other methods so we can add official support!

7.5 Analysis Tools

PyOpenCAP provides user friendly tools for analysis of eigenvalue trajectories in the form of CAPHamiltonian and
EigenvalueTrajectory objects.

Basic usage

The CAPHamiltonian contains functions aimed at diagonalization of the CAP Hamiltonian over a range of eta values.
Assuming one has already obtained HO and W in the state basis as numpy matrices:

from pyopencap.analysis.CAPTrajectory import CAPHamiltonian
eta_list = np.linspace(0,2000,101)

eta_list = eta_list * 1E-5

CAPH = CAPHamiltonian(HO=h0,W=mat)
CAPH.run_trajectory(eta_list,cap_lambda=0.0)

# track the 4th state

traj = CAPH.track_state(4,tracking="overlap")

Alternatively, one can read in HO and W from OpenCAP/Q-Chem output files:

from pyopencap.analysis.CAPTrajectory import CAPHamiltonian
eta_list = np.linspace(0,2000,101)

eta_list = eta_list * 1E-5

CAPH = CAPHamiltonian(output_file="path/to/output.out™)
CAPH.run_trajectory(eta_list,cap_lambda=0.0)

# track the 4th state

traj = CAPH.track_state(4,tracking="overlap")

In both snippets, traj is now a EigenvalueTrajectory object, which contains helpful functions for analysis. For
example, one can find the optimal value of the CAP strength parameter for uncorrected/corrected trajectories:

uc_energy,uc_eta_opt = traj.find_eta_opt()
corr_energy,corr_eta_opt = traj.find_eta_opt(corrected=True)

For more information, please see the documentation for the CAPHamiltonian and EigenvalueTrajectory classes.

7.5.1 CAPHamiltonian

This section briefly describes how to use the CAPHamiltonian object to generate eigenvalue trajectories.
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Initialization

CAPHamiltonian objects can be initialized in one of two ways. The first is to pass HO and W as numpy arrays:

from pyopencap.analysis.CAPTrajectory import CAPHamiltonian
CAPH = CAPHamiltonian(HO®=hO,W-=mat)

The other is to read them in from an OpenCAP output file, or from a Q-Chem output file generated by a Projected
CAP-EOM-CC or Projected CAP-ADC calculation.

CAPH = CAPHamiltonian(output="path/to/output.out")

If one wishes to exclude some of the states from the analysis, this can be accomplished through the by placing their
indices in a list (starting from 0) and passing it into the exclude_states keyword argument:

exclude_states = [2,5,7]
CAPH = CAPHamiltonian(HO=hO0,W-mat,exclude_states=exclude_states)

Similarly, the include_states argument includes only the desired states. Note that these two keywords are incompatible.

include_states = [0,1,2,3,4]
CAPH = CAPHamiltonian(HO®=hO0,W=mat,include_states=include_states)

Importantly, in all cases, the W matrix is assumed to be pre-multiplied by a factor of -1.0.

Diagonalization

The run_trajectory() function diagonalizes the CAP Hamiltonian over a range of eta values (and at a specified
value of the cap lambda parameter if using a CR-CAP).

eta_list = np.linspace(0,2000,101)
eta_list = eta_list * 1E-5
CAPH.run_trajectory(eta_list,cap_lambda=0.0)

Since the W matrix is assumed to be multiplied by a factor of -1.0 upon instantiation, the following matrix is actually
diagonalized at each step:

HOAY = Hy + (in — )W

and each eigenpair is stored in a Root object. After all of the diagonalizations are finished, individual states can be
tracked using the track_state () function:

traj = CAPH.track_state(4,tracking="overlap")

The traj variable is a EigenvalueTrajectory object, which contains helpful functions for analysis. Indices
for states start from 0, and there are two options for tracking states: “overlap” (the default), and “energy”. See
EigenvalueTrajectory for more details.
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Visualization

The energies of all states computed are stored in the fotal_energies instance variable of the CAPHamil tonian object.
This can very useful for graphical searches e.g.

import matplotlib.pyplot as plt

import numpy as np

plt.plot(np.real (CAPH.total_energies),np.imag(CAPH.total_energies), 'ro')
plt.show()

There is also a function energies_ev () which returns the excitation energies in eV with respect to specified reference
energy.

E_ev = CAPH.energies_ev(ref_energy)
plt.plot(np.real(E_ev),np.imag(CAPH.energies_ev(E_ev), 'ro')
plt.show()

class pyopencap.analysis.CAPHamiltonian(pc=None, HO=None, W=None, output=None, irrep="", onset="")
Projected CAP Hamiltonian handler for generating eigenvalue trajectories.
The instance variables HO,W etc. are only set after run_trajectory is executed. The original matrices

passed/parsed when the object is constructed are stored in _HO, _W, etc. This makes it easy to run multiple
trajectories with different states included in the projection scheme without having to construct a new object.

HO
Zeroth order Hamiltonian in state basis
Type
np.ndarray of float: default=None
W
CAP matrix in state basis. -1 prefactor is assumed.
Type
np.ndarray of float: default=None
nstates

Number of states

Type
int
total_energies
Energies of all states found by repeated diagonalization of CAP Hamiltonian

Type
list of float

etas
List of CAP strengths in trajectory.
Type

list of float
cap_lambda
Real CAP strength used for continuum remover CAP. Set to 0.0 by default.

Type
float
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__init__(pc=None, HO=None, W=None, output=None, irrep="", onset="")

Initializes CAPHamiltonian object from HO and W matrix in state basis.

Object can be initialized in one of two ways. The user can pass HO and W directly as numpy matrices, or
they can specify a path to a properly formatted output file (either OpenCAP or Q-Chem) which contains
these two matrices.

W matrix is assumed to already have a -1 prefactor, as that is how OpenCAP output is formatted.
Parameters
* pc (CAP: default=None) — PyOpenCAP CAP object

e H® (np.ndarray of float: default=None)— Zeroth order Hamiltonian in state ba-
sis

* W(np.ndarray of float: default=None)— CAP matrix in state basis. -1 prefactor
is assumed.

e output (str: default=None)— Pathto Q-Chem or OpenCAP output file.

e irrep (str: default=None) — Title of irreducible representation of state of interest.
Only compatible with Q-Chem projected CAP-EOM-CC outputs. Set to ‘all’ to include all
symmetries in CAP projection.

* onset (str: default=None) — Title of CAP onset. Only compatible with Q-Chem
projected CAP-ADC outputs.

energies_ev(ref_energy)

Returns excitation energies of all calculated states in eV with respect to specified reference energy.

Parameters
ref_energy (float) — Reference energy

Returns
E_eV - Excitation energies in eV with respect to specified reference energy.

Return type
list of floats
export (finame)

Exports Zeroth order Hamiltonian and CAP matrix to an OpenCAP formatted output file for further anal-
ysis. Useful for saving the results of an expensive electronic structure calculation performed in a python
environment.

Parameters
finame (str) - File handle to export data.

run_trajectory (eta_list, cap_lambda=0.0, exclude_states=None, include_states=None,
biorthogonalize=False)

Diagonalizes CAP Hamiltonian over range of eta values.

CAP Hamiltonian is defined as H*CAP = HO + i*eta*W - cap_lambda * W. W matrix is assumed to already
have a -1 prefactor, as that is how OpenCAP output is formatted. Recommended range for eta_list is between
1E-5 and 1E-2, though this can vary widely based on system and CAP shape.

Parameters
e eta_list (iterable object) — List of eta values to use

e cap_lambda (float, default=0.0)— Real CAP strength to use for continuum remover
CAP
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e exclude_states (1ist of int, default=None) - List of states to exclude from sub-
space projection. Not compatible with include_states parameter.

e include_states (list of int, default=None) — List of states to include in sub-
space projection. Not compatible with exclude_states parameter.

* biorthogonalize (bool, default=False) - Biorthogonalize left and right eigenvec-
tors. If false, left eigenvectors are assumed to equal right eigenvectors for density matrix
correction

track_state(state_idx, tracking='overlap', correction='derivative")

Tracks eigenvalue trajectory over range of eta values.
Parameters
e state_idx (int) — Index of state to track

e tracking (str, default="overlap")- Method to use to track the state. Options are
“overlap”, which tracks based on eigenvector overlap, and “energy” which tracks based on
energy.

e correction (str, default="derivative'") — Choice of correction scheme. Either
“density” or “derivative”.

Returns
traj — Eigenvalue trajectory for further analysis.

Return type
EigenvalueTrajectory

7.5.2 EigenvalueTrajectory

This section briefly describes how to use the EigenvalueTrajectory object to analyze eigenvalue trajectories.

Initialization

EigenvalueTrajectory objects are generated by the track_state () function of the CAPHamiltonian class. The
state index i starts from 0, and the first state in the trajectory is the ith eigen pair generated by the first diagonalization
atn = 0.

State Tracking

At each diagonalization of the CAP Hamiltonian, left and right n-dependent eigenpairs are computed and bi-
orthogonalized. States are tracked using using one of two criterion: overlap and energy, which is controlled by the
tracking keyword argument of track_state().

When overlap tracking is used (the default), at each step, the state with maximum overlap with the previous state is
chosen as the next point on the trajectory. The overlap is simply calculated as the absolute value of the dot product
between the right eigenvectors.

When energy tracking is used, at each step, the state with the minimum difference in energy from the previous state is
chosen. Since the energies are complex, the difference is computed as the modulus of the difference of the two complex
energies.

Each state in the trajectory is stored as a Root object stored in the states attribute. Lists of uncorrected energies and n
values (in order of smallest to largest 1) value) are also stored in the uncorrected_energies and etas class attributes for
convenience.

36 Chapter 7. Contents



pyopencap Documentation

Corrected Trajectories

Raw uncorrected energies obtained from diagonalizaiton of the CAP Hamiltonian can be sensitive to CAP onset and
basis set quality. Practitioners of CAP theory often report so called corrected energies, the exact form of which may
vary from publication to publication.

We implement two forms of 1st-order corrections: density and derivative, which is controlled by the correction key-
word argument of track_state().

The default is the first-order correction of [Cederbaum2002], which has the form:
OE
U(n) = E(n) — 252,
One can also use the density matrix correction of [Jagau2014] :
Un) = E(n) + inTrly(m)W],
where the trace expression is evaluated using the matrix elements of the CAP in the correlated basis:
TriymW] = 3y e (el (mWig P,

and c” and ¢’ xrefer to the components of the bi-orthogonalized left and right eigenvectors respectively. Note that this
option should only be used when biorthogonalize=True is passed to run_trajectory().

The two approaches can be related to one another by the Hellman-Feynman theoreom, and in our experience yield
nearly identical results.

Corrected trajectories are automatically computed when one obtains an EigenvalueTrajectory object generated by
the track_state() function, and are stored in the class attribute corrected_energies.

# the various options for state tracking and corrections
traj = CAPH.track_state(l,tracking="energy",correction="density")
traj = CAPH.track_state(l,tracking="overlap",correction="derivative")

7] opt

As briefly outlined in the theory, the key to any CAP calculation is to find the optimal value of the CAP strength
parameter 1),,;. The EigenvalueTrajectory class has a function find_eta_opt for exactly that purpose. For
uncorrected trajectories, 7, is calculated as

1 dE

min|ng|

For corrected trajectories, 7, is calculated as
; au

min|n ‘g

The derivative is calculated numerically by means of finite differences.

uc_energy,uc_eta_opt = traj.find_eta_opt()
corr_energy,corr_eta_opt = traj.find_eta_opt(corrected=True)

The presence of nonphysical stationary points can sometimes result in this function returning smaller values of 7,
than desired. One can specify the start_idx keyword argument to begin the search starting from a specified index along
the trajectory.

uc_energy,uc_eta_opt = traj.find_eta_opt(start_idx=20)

7.5. Analysis Tools 37




pyopencap Documentation

Visualization

It can often be helpful to visualize trajectories graphically. In addition to access to the class attributes uncor-
rected_energies and corrected_energies, we also provide some helper functions which process the data in useful ways
for visualization.

For instance, energies_ev () returns the excitation energies in eV with respect to specified reference energy.

import matplotlib.pyplot as plt

UC_ev = traj.energies_ev(ref_energy)

Corr_ev = traj.energies_ev(ref_energy,corrected=True)
plt.plot(np.real (UC_ev),np.imag(UC_ev), 'ro', label='Uncorrected')
plt.plot(np.real(Corr_ev),np.imag(Corr_ev), 'ro', label='Corrected")
plt.show()

get_logarithmic_velocities() returns the value of nag—fp (or \n%| — mun if the corrected keyword argument

is set to True) for each point along the trajectory.

derivs = traj.get_logarithmic_velocities()
plt.plot(traj.etas,derivs)
plt.show()

References

class pyopencap.analysis.EigenvalueTrajectory (state_idx, init_roots, W, tracking='overlap’,
correction='"derivative', biorthogonalized=False)

Eigenvalue trajectory generated by repeated diagonalizations of CAP Hamiltonian over range of eta values.

States are tracked using either eigenvector overlap or energy criterion. Corrected energies are obtained using
density matrix or first order correction.

roots

List of states in trajectory.

Type

list of Root
uncorrected_energies

List of uncorrected energies in trajectory.

Type
list of float

corrected_energies

List of corrected energies in trajectory.

Type

list of float

CAP matrix in state basis. -1 prefactor is assumed.

Type
np.ndarray of float: default=None
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etas
List of CAP strengths in trajectory.

Type

list of float
tracking

Method to use to track the state

Type
str, default="overlap”

correction

Choice of correction scheme. Either “density” or “derivative”. Density matrix correction should only be
used when the eigenvectors have been biorthogonalized. See run_trajectory().

Type

str, default="derivative”

__init__(state_idx, init_roots, W, tracking='overlap', correction="derivative', biorthogonalized=False)

Initializes EigenvalueTrajectory object, which tracks a state starting from the first diagonalization at eta =
0.

Parameters
e state_idx (int) — Index of state to track
e init_roots (list of Root) — Initial set of roots generated by diagonalization at eta =0

* W(np.ndarray of float: default=None)— CAP matrix in state basis. -1 prefactor
is assumed.

e tracking (str, default="overlap")- Method to use to track the state

e correction (str, default="derivative") — Choice of correction scheme. Either
“density” or “derivative”.

* biorthogonalized (bool default=False) — Whether eigenvectors have been
biorthogonalized

energies_ev (ref_energy, corrected=False)
Returns excitation energies of all states in trajectory in eV with respect to specified reference energy.

Parameters
o ref_energy (float) — Reference energy
» corrected (bool, default=False)- Set to true if analyzing corrected trajectory

Returns
E_eV — Excitation energies in eV with respect to specified reference energy.

Return type
list of floats

find_eta_opt (corrected=False, start_idx=1, end_idx=-1, ref_energy=0.0, units="au', return_root=False)

Finds optimal cap strength parameter for eigenvalue trajectory, as defined by eta_opt = min|eta*dE/deta].

The range of self.etas[start_idx:end_idx] (in python slice notation) is searched for the optimal value of CAP
strength parameter.

Parameters
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» corrected (bool, default=False) — Set to true if searching for stationary point on
corrected trajectory

e start_idx (int, default=1) - Starting slice index

e end_idx (int, default=1)- Ending slice index

* ref_energy (float, default=0.0) - Reference energy to define excitation energy.
e units (str, default="au")- Options are “au” or “eV”

e return_root (bool, default=False)— Whether to return Root object associated with
optimal value of eta

Returns
* E_res (complex float) — Complex energy at optimal value of eta
* eta_opt (float) — Optimal value of eta
* root (Root) — Only returned when return_root is set to true

get_energy (eta, corrected=False, ref_energy=0.0, units='au', return_root=False)

Returns total energy at given value of eta.
Note that if the eta provided is not in self.etas, the nearest value will be used.
Parameters
e eta (float) — Value of CAP strength parameter
» corrected (bool, default=False) - Set to true if analyzing corrected trajectory
e ref_energy (float, default=0.0)— Reference energy to define excitation energy.
e units (str, default="au")- Options are “au” or “eV”

e return_root (bool, default=False)-— Whether to return Root object associated with
optimal value of eta

Returns
* E (float) — Energy at given value of eta
* root (Root) — Only returned when return_root is set to true

get_logarithmic_velocities(corrected=False)
Returns eta*dE/deta for each point on eigenvalue trajectory.

Useful for plotting when dealing with multiple potential stationary points.

Parameters
corrected (bool, default=False) - Set to true if analyzing corrected trajectory

Returns
derivs — eta*dE/deta for each point on eigenvalue trajectory

Return type
np.array of float

40 Chapter 7. Contents



pyopencap Documentation

7.5.3 Root

class pyopencap.analysis.Root(energy, eta, Reigvc, Leigvc)

Root obtained from diagonalizing CAP Hamiltonian at given value of eta.

eta
CAP strength parameter

Type
float

energy
Total energy of state

Type

float

Reigvc

Bi-orthogonalized right eigenvector for state

Type
list of float

Leigvc

Bi-orthogonalized left eigenvector for state

Type

list of float

__init__(energy, eta, Reigvc, Leigvc)

Initializes root object.
Parameters
* eta (float) — CAP strength parameter
* energy (float) — Total energy of state

e eigvc (1ist of float) - Eigenvector for state

7.5.4 Columbus Parser

class pyopencap.analysis.colparser (molden_file, tranls)

A class that parses COLUMBUS electronic structure package generated files to generate state density and tran-
sition density matrices for projected-CAP calculation on MR-CI level.

__init__ (molden_file, tranls)
Initializes the colparser class

Parameters

* molden_file (str) — molden MO filename (generated in MOLDEN/ folder in COLUM-
BUS calculation Directory)

¢ tranls (str) — Path to tranls file generated by Columbus in WORK directory

get_HO (correction_type='eci+pople’, filename='ciudgsm")
Parses energies from a Columbus ciudgsm file.

Parameters
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e correction_type (str, optional) - One of {‘eci+pople’, ‘eci’, ‘eci+dv1’, ‘eci+dv2’,
‘eci+dv3’ }. Default is ‘eci+pople’

e filename (str, optional) — Path to Columbus ciudgsm file located in WORK direc-
tory. If unspecified, assumed to be ‘./ciudgsm’.

Notes

See https://aip.scitation.org/doi/pdf/10.1063/1.5144267 for discussion of corrections.

Returns
HO_mat — Diagonal hamiltonian with CI energies.

Return type
np.ndarray

mo_summary ()
Prints information about active space and symmetries of MOs.

Returns
Total number of basis functions (nbft) Number of basis functions in each symmetry block
(NBPSY). Number of orbitals in each of the symmetry blocks.(NMPSY <= NBSPSY) Num-
ber of frozen orbitals in each of the symmetry blocks (NFCSY ). Character labels for the
symmetry blocks (SLABEL).

Return type
str

sdm_ao (i, DRTn=1, data_dir=".", filename=None)
Returns state density matrix in atomic orbital basis by parsing a Columbus cidltrfl.iwfmt file.

Parameters
e i (int) — State index
e DRTn (int, optional)— DRT index

e data_dir (str, optional)— Directory to search for .iwfmt file. Should not be used in
conjunction with filename kwarg

e filename (str, optional) — Path to file to parse. If not specified, the filename is as-
sumed to be cidltrfl. FROMdrt{drtFrom}.state{i}TOdrt{drtTo}.state{i}.iwfmt in the cur-
rent directory.

Returns
sdm — State density matrix in AO basis

Return type
np.ndarray

sdm_ao_cid1£l (i, DRTn)
Read CI state densities from state density cid1fl*.iwfmt files.

Currently NYL.
Parameters
e i (int) — State index
¢ DRTn (int) — DRT index

Raises
NotImplementedError —
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Returns
State density matrix in AO basis

Return type
np.ndarray

tdm_ao (iFROM, iTO, drtFrom=1, drtTo=1, data_dir=".", filename=None)

Returns transition density matrix in atomic orbital basis by parsing a Columbus cid1trfl.iwfmt file.
Parameters
¢ iFROM (int) — Initial state index and final state indices respectively.
e iTO (int) — Initial state index and final state indices respectively.
e drtFrom (int, optional)— DRT indices
e drtTo (int, optional)— DRT indices

e data_dir (str, optional) - Directory to search for .iwfmt file. Should not be used in
conjunction with filename kwarg

e filename (str, optional) — Path to file to parse. If not specified, the filename is as-
sumed to be cid1trfl. FROMdrt{drtFrom}.state{iFrom}TOdrt{drtTo}.state{iTO}.iwfmt in
the current directory.

Returns
tdm — Transition density matrix in AO basis

Return type
np.ndarray

7.6 Custom CAPs and Grids

Starting with PyOpenCAP version 1.2, users can now specify customized CAP functions and numerical integration
grids.

7.6.1 Custom CAPs

Python functions with the signature vector<double>,vector<double>,vector<double>,vector<double>
--> vector<double> can be used as CAP functions by the CAP class for numerical integration. An example is
provided below:

# this defines a box CAP of with cutoffs of 3 bohr in each coordinate
def box_cap(x,y,z,w):
cap_values = []

cap_x = 3.00
cap_y = 3.00
cap_z = 3.00

for i in range(0®,len(x)):
result = 0
if np.abs(x[i])>cap_x:
result += (np.abs(x[i])-cap_x) * (np.abs(x[i])-cap_x)
if np.abs(y[i])>cap_y:
result += (np.abs(y[i])-cap_y) * (np.abs(y[i])-cap_y)
if np.abs(z[i])>cap_z:

(continues on next page)
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(continued from previous page)

result += (np.abs(z[i])-cap_z) * (np.abs(z[i])-cap_z)
result = w[i]*result
cap_values.append(result)
return cap_values

cap_dict = {"cap_type": "custom"}
pc = pyopencap.CAP(s,cap_dict,5,box_cap)

7.6.2 Custom Grids

Custom grids for numerical integration can be specified using the compute_cap_on_grid function. The arguments
are assumed to be 1D arrays of equal size. The function can be called repeatedly for a camulative sum in the case of
atomic grids. An example is provided below:

for i in range(0®,Natoms):
X,y,z,w = get_grid_for_atom(atoms[i])
pc.compute_cap_on_grid(x,y,z,w)
# final sum is cumulative
pc.compute_projected_cap()

7.7 API

PyOpenCAP exposes two OpenCAP classes to Python: System and CAP.

7.7.1 pyopencap.System

The System class is used to store the molecular geometry and the basis set. Upon construction, it automatically com-
putes the overlap matrix which can be accessed and used to verify the the ordering of the atomic orbital basis set.

class pyopencap.System

__init__ (self: pyopencap.pyopencap_cpp.System, sys_dict: dict) — None
Constructs System object from python dictionary.

get_overlap_mat (self: pyopencap.pyopencap_cpp.System, ordering: str = 'molden’, basis_file: str=") —
numpy.ndarray[numpy.float64[m, n]]

Returns overlap matrix. Supported orderings: pyscf, openmolcas, qchem, psi4, molden.

check_overlap_mat (self: pyopencap.pyopencap_cpp.System, smat: numpy.ndarray[numpy.float64[m, n]],
ordering: str, basis_file: str =") — bool
Compares input overlap matrix to internal overlap matrix to check basis set ordering. Supported orderings:
pyscf, openmolcas, qchem, psi4, molden.
get_basis_ids(self: pyopencap.pyopencap_cpp.System) — str
Returns a string of the basis function ids. Each ID has the following format:atom index,shell number,l,m
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7.7.2 pyopencap.CAP

The CAP class is used to compute the CAP matrix first in AO basis, and then in wave function basis using the one-
particle densities which are passed in. It is also capable of parsing OpenMolcas output files to obtain the zeroth order
Hamiltonian and return it to the user.

class pyopencap.CAP

__init__(*args, **kwargs)
Overloaded function.

1. __init__(self: pyopencap.pyopencap_cpp.CAP, system: pyopencap.pyopencap_cpp.System, cap_dict:
dict, nstates: int) -> None

Constructs CAP object from system, cap dictionary, and number of states.

2. __init__(self: pyopencap.pyopencap_cpp.CAP, system: pyopencap.pyopencap_cpp.System, cap_dict:
dict, nstates: int, cap_func: Callable[[List[float], List[float], List[float], List[float]], List[float]]) ->
None

Constructs CAP object from system, cap dictionary, number of states, and cap function.
add_tdm(self: pyopencap.pyopencap_cpp.CAP, tdm: numpy.ndarray[numpy.float64[m, n]], initial_idx: int,
final_idx: int, ordering: str, basis_file: str =") — None

Adds spin-traced tdm to CAP object at specified indices. The optional argument basis_file is required when
using the OpenMolcas interface, and it must point to the path to the rassi.5 file. Supported orderings: pyscf,
openmolcas, qchem, psi4, molden.

add_tdms (self: pyopencap.pyopencap_cpp.CAP, alpha_density: numpy.ndarray[numpy.float64[m, n]],
beta_density: numpy.ndarray[numpy.float64[m, n]], initial_idx: int, final_idx: int, ordering: str,
basis_file: str =") — None

Adds alpha/beta tdms to CAP object at specified indices. The optional argument basis_file is required when
using the OpenMolcas interface, and it must point to the path to the rassi.5 file. Supported orderings: pyscf,
openmolcas, qchem, psi4, molden.

compute_ao_cap (self: pyopencap.pyopencap_cpp.CAP, cap_dict: dict, cap_func: Callable[[List[float],
List[float], List[float], List[float]], List[float]] = None) — None

Computes CAP matrix in AO basis.
compute_projected_cap (self: pyopencap.pyopencap_cpp.CAP) — None
Computes CAP matrix in state basis using transition density matrices.
get_H(self: pyopencap.pyopencap_cpp.CAP) — numpy.ndarray[numpy.float64[m, n]]
Returns zeroth order Hamiltonian read from file.

get_ao_cap (self: pyopencap.pyopencap_cpp.CAP, ordering: str = 'molden’, basis_file: str=""7) —
numpy.ndarray[numpy.float64[m, n]]
Returns CAP matrix in AO basis. Supported orderings: pyscf, openmolcas, qchem, psi4, molden.
get_projected_cap (self: pyopencap.pyopencap_cpp.CAP) — numpy.ndarray[numpy.float64[m, n]]
Returns CAP matrix in state basis.
read_data(self: pyopencap.pyopencap_cpp.CAP, es_dict: dict) — None
Reads electronic structure data specified in dictionary.
renormalize (self: pyopencap.pyopencap_cpp.CAP) — None

Re-normalizes AO CAP using electronic structure data.
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renormalize_cap (self: pyopencap.pyopencap_cpp.CAP, smat: numpy.ndarray[numpy.float64[m, n]],
ordering: str, basis_file: str =") — None

Re-normalizes AO CAP matrix using input overlap matrix.

compute_cap_on_grid(self: pyopencap.pyopencap_cpp.CAP, x: numpy.ndarray[numpy.float64], y:
numpy.ndarray[numpy.float64], z: numpy.ndarray[numpy.float64], w:
numpy.ndarray[numpy.float64]) — None

Computes CAP matrix on supplied grid. Sum will cumulated for each successive grid until com-
pute_projected_cap is called.

7.8 Keywords

PyOpenCAP uses Python dictionaries which contain key/value pairs to specify the parameters of the calculation. Here,
we outline the valid key/value combinations. Importantly, all key value pairs should be specified as strings.

7.8.1 System keywords

The System object contains the basis set and geometry information, which can be obtained in a few different ways.

Key- | Re- | Valid Description
word| quired values
molecujes | molden,q¢hSpeciftds which format to read the molecular geometry. If “inline” is chosen, the “geom-
rassi_h3,inléetey” keyword is also required.

ge- | no | See be- | Specifies the geometry in an inline format described below. Required when the “molecule”

om- low field is set to “inline”.

etry

ba- | yes | path to | Specifies the path to the basis file. When “molecule” is set to “molden”,’rassi_h5”, or

sis_file basis “qchem_fchk”, this field should be set to a path to a file of the specified type. When
file “molecule” is set to “inline”, this field should be set to a path to a basis set file formatted

in “Psi4” style.

cart_bfno ‘d’, ‘df’, | Controls the use of pure or Cartesian angular forms of GTOs. The letters corresponding

‘dfg’ to the angular momenta listed in this field will be expanded in cartesians, those not listed

‘dg’, ‘f’, | will be expanded in pure GTOs. For example, “df” means d and f-type functions will
‘g’, ‘fg’ | be cartesian, and all others will be pure harmonic. This keyword is only active when
“molecule” is set to “inline”.

bohr_|coordindtdsue” Set this keyword to true when the coordinates specified in “geometry” keyword are in bohr
or units. This keyword is only active when “molecule” is set to “inline”.
“False”

When specifying the geometry inline, use the following format:

atoml x-coordinate y-coordinate z-coordinate

atom2 x-coordinate y-coordinate z-coordinate ...

Ghost centers with zero nuclear charge can be specified using the symbol “X”.
Units are assumed to be Angstroms unless the bohr_coordinates keyword is set to True.

Example:
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sys_dict = {"geometry": ""'N 0 O 1.039
N 06 0 -1.039
X 0 06 0.0''",

"molecule" : "read",
"basis_file":"path/to/basis.bas",
"cart_bf":"d",
"bohr_coordinates:": "true"}

7.8.2 CAP keywords

PyOpenCAP supports Voronoi and Box-type absorbing potentials. We also allow some customization of the numerical
grid used for integration. Please see https://github.com/dftlibs/numgrid for more details on the radial_precision and
angular_points keywords.

General Keywords

Key- | Re- | Default/valid | Description
word | quired values

cap_typeyes | “box” or | Type of absorbing potential.

“voronoi”
ra- no | “16” Radial precision for numerical integration grid. A precision of 1x107(-N), where
dial_precision N is the value specified is used.
angu- | no | “590” Number of angular points used for the grid. See https://github.com/dftlibs/
lar_points numgrid for allowed numbers of points.
thresh | no “7” Threshold for exponents of GTO which contribute to CAP integrals. All GTOs

with exponents smaller than 1.0210~""¢5" will be discarded for CAP integrals.
If you’re getting errors about allocating the grid, try reducing thresh.
do_numaenrécal| True for box | Analytical [Santral999] integrals are available for Box CAPs only, and are used
CAPs, false | by default. All other CAPs must be integrated numerically.

for other
CAPs

Box CAP

A quadratic potential which encloses the system in a 3D rectangular box. Analytical integrals are available for these
types of CAPs.

W =W, + W, + W,

W — 0 I7o| < RO
e« (TQ—R2)2 |7o| > RO

Keyword | Description

cap_x Onset of CAP in x-direction. Specify in bohr units.
cap_y Onset of CAP in y-direction. Specify in bohr units.
cap_y Onset of CAP in z-direction. Specify in bohr units.

Smooth Voronoi CAP

A quadratic potential which uniformly wraps around the system at a specified cutoff radius. The edges between between
Voronoi cells are smoothed out to make the potential more amenable to numerical integration [Sommerfeld2015].

W () = {( 0 Twa < Tcut}

2
TWA — T'cut) TWA > Teut
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Tomin = MiD |7 — ﬁl|
(2
Keyword | Description
r_cut Cutoff radius for Voronoi CAP. Specify in bohr units.
Example
cap_dict = {"cap_type": "box",
"cap_x":"2.76",
"cap_y":"2.76",
"cap_z":"4.88",
"Radial_precision": "14",
"angular_points": "110"}

Electronic structure keywords

The read_data () function is able to parse the zeroth order Hamiltonian and load the densities when supplied with an
appropriate formatted dictionary. All keywords must be specified to use this function. Currently, this is only supported
for calculations using the OpenMolcas and Q-Chem interfaces.

Keyword Description
method Electronic structure method used in the calculation. Valid options are “MS-CASPT2”, “EOM”, and
“TDDFT”.
mol- Path to OpenMolcas output file.
cas_output
hO_file Path to Zeroth order Hamiltonian file. Can be full matrix or diagonal. See https://github.com/gayverjr/
opencap/tree/main/examples/opencap
package “OpenMolcas” or “QChem”
rassi_h5 Path to OpenMolcas rassi.hS file.
gchem_outpu®Path to Q-Chem output file.
gchem_fchk Path to Q-Chem .fchk file.
Example:
es_dict = { "package": "openmolcas",
"method" : "ms-caspt2",

"molcas_output":"path/to/output.out",
"rassi_h5":"path/to/rassi.h5"}
pc.read_data(es_dict)
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7.8.3 References
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